2 research outputs found

    Aspects of interval analysis applied to initial-value problems for ordinary differential equations and hyperbolic partial differential equations

    Get PDF
    Interval analysis is an essential tool in the construction of validated numerical solutions of Initial Value Problems (IVP) for Ordinary (ODE) and Partial (PDE) Differential Equations. A validated solution typically consists of guaranteed lower and upper bounds for the exact solution or set of exact solutions in the case of uncertain data, i.e. it is an interval function (enclosure) containing all solutions of the problem. IVP for ODE: The central point of discussion is the wrapping effect. A new concept of wrapping function is introduced and applied in studying this effect. It is proved that the wrapping function is the limit of the enclosures produced by any method of certain type (propagate and wrap type). Then, the wrapping effect can be quantified as the difference between the wrapping function and the optimal interval enclosure of the solution set (or some norm of it). The problems with no wrapping effect are characterized as problems for which the wrapping function equals the optimal interval enclosure. A sufficient condition for no wrapping effect is that there exist a linear transformation, preserving the intervals, which reduces the right-hand side of the system of ODE to a quasi-isotone function. This condition is also necessary for linear problems and "near" necessary in the general case. Hyperbolic PDE: The Initial Value Problem with periodic boundary conditions for the wave equation is considered. It is proved that under certain conditions the problem is an operator equation with an operator of monotone type. Using the established monotone properties, an interval (validated) method for numerical solution of the problem is proposed. The solution is obtained step by step in the time dimension as a Fourier series of the space variable and a polynomial of the time variable. The numerical implementation involves computations in Fourier and Taylor functoids. Propagation of discontinuo~swaves is a serious problem when a Fourier series is used (Gibbs phenomenon, etc.). We propose the combined use of periodic splines and Fourier series for representing discontinuous functions and a method for propagating discontinuous waves. The numerical implementation involves computations in a Fourier hyper functoid.Mathematical SciencesD. Phil. (Mathematics

    Surveillance préventive des systèmes hybrides à incertitudes bornées

    Get PDF
    This thesis is dedicated to the development of generic algorithms for the set-membership observation of the continuous state and the discrete mode of hybrid dynamical systems in order to achieve fault detection. This thesis is organized into two parts. In the first part, we have proposed a fast and effective method for the set-membership guard crossing. It consists in carrying out bisection in the time direction only and then makes several contractors working simultaneously to reduce the domain of state vectors located on the guard during the study time slot. Then, we proposed a method for merging trajectories based on zonotopic enclosures. These methods, used together, allowed us to characterize in a guaranteed way the set of all hybrid state trajectories generated by an uncertain hybrid dynamical system on a finite time horizon. The second part focuses on set-membership methods for the parameters or the hybrid state (mode and continuous state) of a hybrid dynamical system in a bounded error framework. We started first by describing fault detection methods for hybrid systems using the parametric approach and the hybrid observer approach. Then, we have described two methods for performing fault detection tasks. We have proposed a method for computing in a guaranteed way all the parameters consistent with the hybrid dynamical model, the actual data and the prior error bound, by using our nonlinear hybrid reachability method and an algorithm for partition which we denote SIVIA-H. Then, for hybrid state estimation, we have proposed a method based on a predictor-corrector, which is also built on top of our non-linear method for hybrid reachability.Cette thèse est dédiée au développement d’algorithmes génériques pour l’observation ensembliste de l’état continu et du mode discret des systèmes dynamiques hybrides dans le but de réaliser la détection de défauts. Cette thèse est organisée en deux grandes parties. Dans la première partie, nous avons proposé une méthode rapide et efficace pour le passage ensembliste des gardes. Elle consiste à procéder à la bissection dans la seule direction du temps et ensuite faire collaborer plusieurs contracteurs simultanément pour réduire le domaine des vecteurs d’état localisés sur la garde, durant la tranche de temps étudiée. Ensuite, nous avons proposé une méthode pour la fusion des trajectoires basée sur l'utilisation des zonotopes. Ces méthodes, utilisées conjointement, nous ont permis de caractériser de manière garantie l'ensemble des trajectoires d'état hybride engendrées par un système dynamique hybride incertain sur un horizon de temps fini. La deuxième partie de la thèse aborde les méthodes ensemblistes pour l'estimation de paramètres et pour l'estimation d'état hybride (mode et état continu) dans un contexte à erreurs bornées. Nous avons commencé en premier lieu par décrire les méthodes de détection de défauts dans les systèmes hybrides en utilisant une approche paramétrique et une approche observateur hybride. Ensuite, nous avons décrit deux méthodes permettant d’effectuer les tâches de détection de défauts. Nous avons proposé une méthode basée sur notre méthode d'atteignabilité hybride non linéaire et un algorithme de partitionnement que nous avons nommé SIVIA-H pour calculer de manière garantie l'ensemble des paramètres compatibles avec le modèle hybride, les mesures et avec les bornes d’erreurs. Ensuite, pour l'estimation d'état hybride, nous avons proposé une méthode basée sur un prédicteurcorrecteur construit au dessus de notre méthode d'atteignabilité hybride non linéaire
    corecore