5 research outputs found

    Worst-case upper bounds for MAX-2-SAT with an application to MAX-CUT

    Get PDF
    AbstractThe maximum 2-satisfiability problem (MAX-2-SAT) is: given a Boolean formula in 2-CNF, find a truth assignment that satisfies the maximum possible number of its clauses. MAX-2-SAT is MAX-SNP-complete. Recently, this problem received much attention in the contexts of (polynomial-time) approximation algorithms and (exponential-time) exact algorithms. In this paper, we present an exact algorithm solving MAX-2-SAT in time poly(L)·2K/5, where K is the number of clauses and L is their total length. In fact, the running time is only poly(L)·2K2/5, where K2 is the number of clauses containing two literals. This bound implies the bound poly(L)·2L/10. Our results significantly improve previous bounds: poly(L)·2K/2.88 (J. Algorithms 36 (2000) 62–88) and poly(L)·2K/3.44 (implicit in Bansal and Raman (Proceedings of the 10th Annual Conference on Algorithms and Computation, ISAAC’99, Lecture Notes in Computer Science, Vol. 1741, Springer, Berlin, 1999, pp. 247–258.))As an application, we derive upper bounds for the (MAX-SNP-complete) maximum cut problem (MAX-CUT), showing that it can be solved in time poly(M)·2M/3, where M is the number of edges in the graph. This is of special interest for graphs with low vertex degree

    On the Quantitative Hardness of CVP

    Full text link
    \newcommand{\eps}{\varepsilon} \newcommand{\problem}[1]{\ensuremath{\mathrm{#1}} } \newcommand{\CVP}{\problem{CVP}} \newcommand{\SVP}{\problem{SVP}} \newcommand{\CVPP}{\problem{CVPP}} \newcommand{\ensuremath}[1]{#1} For odd integers p≥1p \geq 1 (and p=∞p = \infty), we show that the Closest Vector Problem in the ℓp\ell_p norm (\CVP_p) over rank nn lattices cannot be solved in 2^{(1-\eps) n} time for any constant \eps > 0 unless the Strong Exponential Time Hypothesis (SETH) fails. We then extend this result to "almost all" values of p≥1p \geq 1, not including the even integers. This comes tantalizingly close to settling the quantitative time complexity of the important special case of \CVP_2 (i.e., \CVP in the Euclidean norm), for which a 2n+o(n)2^{n +o(n)}-time algorithm is known. In particular, our result applies for any p=p(n)≠2p = p(n) \neq 2 that approaches 22 as n→∞n \to \infty. We also show a similar SETH-hardness result for \SVP_\infty; hardness of approximating \CVP_p to within some constant factor under the so-called Gap-ETH assumption; and other quantitative hardness results for \CVP_p and \CVPP_p for any 1≤p<∞1 \leq p < \infty under different assumptions
    corecore