9,744 research outputs found

    Meso-scale FDM material layout design strategies under manufacturability constraints and fracture conditions

    Get PDF
    In the manufacturability-driven design (MDD) perspective, manufacturability of the product or system is the most important of the design requirements. In addition to being able to ensure that complex designs (e.g., topology optimization) are manufacturable with a given process or process family, MDD also helps mechanical designers to take advantage of unique process-material effects generated during manufacturing. One of the most recognizable examples of this comes from the scanning-type family of additive manufacturing (AM) processes; the most notable and familiar member of this family is the fused deposition modeling (FDM) or fused filament fabrication (FFF) process. This process works by selectively depositing uniform, approximately isotropic beads or elements of molten thermoplastic material (typically structural engineering plastics) in a series of pre-specified traces to build each layer of the part. There are many interesting 2-D and 3-D mechanical design problems that can be explored by designing the layout of these elements. The resulting structured, hierarchical material (which is both manufacturable and customized layer-by-layer within the limits of the process and material) can be defined as a manufacturing process-driven structured material (MPDSM). This dissertation explores several practical methods for designing these element layouts for 2-D and 3-D meso-scale mechanical problems, focusing ultimately on design-for-fracture. Three different fracture conditions are explored: (1) cases where a crack must be prevented or stopped, (2) cases where the crack must be encouraged or accelerated, and (3) cases where cracks must grow in a simple pre-determined pattern. Several new design tools, including a mapping method for the FDM manufacturability constraints, three major literature reviews, the collection, organization, and analysis of several large (qualitative and quantitative) multi-scale datasets on the fracture behavior of FDM-processed materials, some new experimental equipment, and the refinement of a fast and simple g-code generator based on commercially-available software, were developed and refined to support the design of MPDSMs under fracture conditions. The refined design method and rules were experimentally validated using a series of case studies (involving both design and physical testing of the designs) at the end of the dissertation. Finally, a simple design guide for practicing engineers who are not experts in advanced solid mechanics nor process-tailored materials was developed from the results of this project.U of I OnlyAuthor's request

    Defining Service Level Agreements in Serverless Computing

    Get PDF
    The emergence of serverless computing has brought significant advancements to the delivery of computing resources to cloud users. With the abstraction of infrastructure, ecosystem, and execution environments, users could focus on their code while relying on the cloud provider to manage the abstracted layers. In addition, desirable features such as autoscaling and high availability became a provider’s responsibility and can be adopted by the user\u27s application at no extra overhead. Despite such advancements, significant challenges must be overcome as applications transition from monolithic stand-alone deployments to the ephemeral and stateless microservice model of serverless computing. These challenges pertain to the uniqueness of the conceptual and implementation models of serverless computing. One of the notable challenges is the complexity of defining Service Level Agreements (SLA) for serverless functions. As the serverless model shifts the administration of resources, ecosystem, and execution layers to the provider, users become mere consumers of the provider’s abstracted platform with no insight into its performance. Suboptimal conditions of the abstracted layers are not visible to the end-user who has no means to assess their performance. Thus, SLA in serverless computing must take into consideration the unique abstraction of its model. This work investigates the Service Level Agreement (SLA) modeling of serverless functions\u27 and serverless chains’ executions. We highlight how serverless SLA fundamentally differs from earlier cloud delivery models. We then propose an approach to define SLA for serverless functions by utilizing resource utilization fingerprints for functions\u27 executions and a method to assess if executions adhere to that SLA. We evaluate the approach’s accuracy in detecting SLA violations for a broad range of serverless application categories. Our validation results illustrate a high accuracy in detecting SLA violations resulting from resource contentions and provider’s ecosystem degradations. We conclude by presenting the empirical validation of our proposed approach, which could detect Execution-SLA violations with accuracy up to 99%

    Growth trends and site productivity in boreal forests under management and environmental change: insights from long-term surveys and experiments in Sweden

    Get PDF
    Under a changing climate, current tree and stand growth information is indispensable to the carbon sink strength of boreal forests. Important questions regarding tree growth are to what extent have management and environmental change influenced it, and how it might respond in the future. In this thesis, results from five studies (Papers I-V) covering growth trends, site productivity, heterogeneity in managed forests and potentials for carbon storage in forests and harvested wood products via differing management strategies are presented. The studies were based on observations from national forest inventories and long-term experiments in Sweden. The annual height growth of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) had increased, especially after the millennium shift, while the basal area growth remains stable during the last 40 years (Papers I-II). A positive response on height growth with increasing temperature was observed. The results generally imply a changing growing condition and stand composition. In Paper III, yield capacity of conifers was analysed and compared with existing functions. The results showed that there is a bias in site productivity estimates and the new functions give better prediction of the yield capacity in Sweden. In Paper IV, the variability in stand composition was modelled as indices of heterogeneity to calibrate the relationship between basal area and leaf area index in managed stands of Norway spruce and Scots pine. The results obtained show that the stand structural heterogeneity effects here are of such a magnitude that they cannot be neglected in the implementation of hybrid growth models, especially those based on light interception and light-use efficiency. In the long-term, the net climate benefits in Swedish forests may be maximized through active forest management with high harvest levels and efficient product utilization, compared to increasing carbon storage in standing forests through land set-asides for nature conservation (Paper V). In conclusion, this thesis offers support for the development of evidence-based policy recommendations for site-adapted and sustainable management of Swedish forests in a changing climate

    Full stack development toward a trapped ion logical qubit

    Get PDF
    Quantum error correction is a key step toward the construction of a large-scale quantum computer, by preventing small infidelities in quantum gates from accumulating over the course of an algorithm. Detecting and correcting errors is achieved by using multiple physical qubits to form a smaller number of robust logical qubits. The physical implementation of a logical qubit requires multiple qubits, on which high fidelity gates can be performed. The project aims to realize a logical qubit based on ions confined on a microfabricated surface trap. Each physical qubit will be a microwave dressed state qubit based on 171Yb+ ions. Gates are intended to be realized through RF and microwave radiation in combination with magnetic field gradients. The project vertically integrates software down to hardware compilation layers in order to deliver, in the near future, a fully functional small device demonstrator. This thesis presents novel results on multiple layers of a full stack quantum computer model. On the hardware level a robust quantum gate is studied and ion displacement over the X-junction geometry is demonstrated. The experimental organization is optimized through automation and compressed waveform data transmission. A new quantum assembly language purely dedicated to trapped ion quantum computers is introduced. The demonstrator is aimed at testing implementation of quantum error correction codes while preparing for larger scale iterations.Open Acces

    International Conference on Mathematical Analysis and Applications in Science and Engineering – Book of Extended Abstracts

    Get PDF
    The present volume on Mathematical Analysis and Applications in Science and Engineering - Book of Extended Abstracts of the ICMASC’2022 collects the extended abstracts of the talks presented at the International Conference on Mathematical Analysis and Applications in Science and Engineering – ICMA2SC'22 that took place at the beautiful city of Porto, Portugal, in June 27th-June 29th 2022 (3 days). Its aim was to bring together researchers in every discipline of applied mathematics, science, engineering, industry, and technology, to discuss the development of new mathematical models, theories, and applications that contribute to the advancement of scientific knowledge and practice. Authors proposed research in topics including partial and ordinary differential equations, integer and fractional order equations, linear algebra, numerical analysis, operations research, discrete mathematics, optimization, control, probability, computational mathematics, amongst others. The conference was designed to maximize the involvement of all participants and will present the state-of- the-art research and the latest achievements.info:eu-repo/semantics/publishedVersio

    Talent Identification and Development in Sports Performance

    Get PDF
    The identification and development of talent have always been a relevant topic in sports performance. In fact, a significant body of research is available worldwide discussing this longitudinal process, the qualities that underpin elite sports performance, and how coaches can facilitate the developmental process of talented athletes. Despite the continued interest given to issues of talent identification and development, recent literature highlights the low predictive value of applied and theoretical talent identification models. Talent is the expression of a complex and multidimensional phenomenon, where, despite the existing practical recommendations, many coaches and stakeholders continue to fail to adequately value the distinction between growth, maturation, and training age. Technological resources have enabled important advances, however, this has been limited essentially to defining or validating motor skills variables or genetic markers that characterize the most talented athletes. Emerging technological resources and recent methodological advances are enabling integrated assessment and monitoring to include maturational, physiological, biomechanical, and perceptual skills while also creating optimal environments for performance and dealing with injury prevention and recovery
    • …
    corecore