132,978 research outputs found

    Blur Interpolation Transformer for Real-World Motion from Blur

    Full text link
    This paper studies the challenging problem of recovering motion from blur, also known as joint deblurring and interpolation or blur temporal super-resolution. The remaining challenges are twofold: 1) the current methods still leave considerable room for improvement in terms of visual quality even on the synthetic dataset, and 2) poor generalization to real-world data. To this end, we propose a blur interpolation transformer (BiT) to effectively unravel the underlying temporal correlation encoded in blur. Based on multi-scale residual Swin transformer blocks, we introduce dual-end temporal supervision and temporally symmetric ensembling strategies to generate effective features for time-varying motion rendering. In addition, we design a hybrid camera system to collect the first real-world dataset of one-to-many blur-sharp video pairs. Experimental results show that BiT has a significant gain over the state-of-the-art methods on the public dataset Adobe240. Besides, the proposed real-world dataset effectively helps the model generalize well to real blurry scenarios

    Motion Offset for Blur Modeling

    Get PDF
    Motion blur caused by the relative movement between the camera and the subject is often an undesirable degradation of the image quality. In most conventional deblurring methods, a blur kernel is estimated for image deconvolution. Due to the ill-posed nature, predefined priors are proposed to suppress the ill-posedness. However, these predefined priors can only handle some specific situations. In order to achieve a better deblurring performance on dynamic scene, deep-learning based methods are proposed to learn a mapping function that restore the sharp image from a blurry image. The blur may be implicitly modelled in feature extraction module. However, the blur modelled from the paired dataset cannot be well generalized to some real-world scenes. To summary, an accurate and dynamic blur model that more closely approximates real-world blur is needed. By revisiting the principle of camera exposure, we can model the blur with the displacements between sharp pixels and the exposed pixel, namely motion offsets. Given specific physical constraints, motion offsets are able to form different exposure trajectories (i.e. linear, quadratic). Compare to conventional blur kernel, our proposed motion offsets are a more rigorous approximation for real-world blur, since they can constitute a non-linear and non-uniform motion field. Through learning from dynamic scene dataset, an accurate and spatial-variant motion offset field is obtained. With accurate motion information and a compact blur modeling method, we explore the ways of utilizing motion information to facilitate multiple blur-related tasks. By introducing recovered motion offsets, we build up a motion-aware and spatial-variant convolution. For extracting a video clip from a blurry image, motion offsets can provide an explicit (non-)linear motion trajectory for interpolating. We also work towards a better image deblurring performance in real-world scenarios by improving the generalization ability of the deblurring model

    Leveraging blur information for plenoptic camera calibration

    Full text link
    This paper presents a novel calibration algorithm for plenoptic cameras, especially the multi-focus configuration, where several types of micro-lenses are used, using raw images only. Current calibration methods rely on simplified projection models, use features from reconstructed images, or require separated calibrations for each type of micro-lens. In the multi-focus configuration, the same part of a scene will demonstrate different amounts of blur according to the micro-lens focal length. Usually, only micro-images with the smallest amount of blur are used. In order to exploit all available data, we propose to explicitly model the defocus blur in a new camera model with the help of our newly introduced Blur Aware Plenoptic (BAP) feature. First, it is used in a pre-calibration step that retrieves initial camera parameters, and second, to express a new cost function to be minimized in our single optimization process. Third, it is exploited to calibrate the relative blur between micro-images. It links the geometric blur, i.e., the blur circle, to the physical blur, i.e., the point spread function. Finally, we use the resulting blur profile to characterize the camera's depth of field. Quantitative evaluations in controlled environment on real-world data demonstrate the effectiveness of our calibrations.Comment: arXiv admin note: text overlap with arXiv:2004.0774

    Automatic quantification of the microvascular density on whole slide images, applied to paediatric brain tumours

    Full text link
    Angiogenesis is a key phenomenon for tumour progression, diagnosis and treatment in brain tumours and more generally in oncology. Presently, its precise, direct quantitative assessment can only be done on whole tissue sections immunostained to reveal vascular endothelial cells. But this is a tremendous task for the pathologist and a challenge for the computer since digitised whole tissue sections, whole slide images (WSI), contain typically around ten gigapixels. We define and implement an algorithm that determines automatically, on a WSI at objective magnification 40×40\times, the regions of tissue, the regions without blur and the regions of large puddles of red blood cells, and constructs the mask of blur-free, significant tissue on the WSI. Then it calibrates automatically the optical density ratios of the immunostaining of the vessel walls and of the counterstaining, performs a colour deconvolution inside the regions of blur-free tissue, and finds the vessel walls inside these regions by selecting, on the image resulting from the colour deconvolution, zones which satisfy a double-threshold criterion. A mask of vessel wall regions on the WSI is produced. The density of microvessels is finally computed as the fraction of the area of significant tissue which is occupied by vessel walls. We apply this algorithm to a set of 186 WSI of paediatric brain tumours from World Health Organisation grades I to IV. The segmentations are of very good quality although the set of slides is very heterogeneous. The computation time is of the order of a fraction of an hour for each WSI on a modest computer. The computed microvascular density is found to be robust and strongly correlates with the tumour grade. This method requires no training and can easily be applied to other tumour types and other stainings

    Improved Handling of Motion Blur in Online Object Detection

    Get PDF
    We wish to detect specific categories of objects, for on-line vision systems that will run in the real world. Object detection is already very challenging. It is even harder when the images are blurred, from the camera being in a car or a hand-held phone. Most existing efforts either focused on sharp images, with easy to label ground truth, or they have treated motion blur as one of many generic corruptions.Instead, we focus especially on the details of egomotion induced blur. We explore five classes of remedies, where each targets different potential causes for the performance gap between sharp and blurred images. For example, first deblurring an image changes its human interpretability, but at present, only partly improves object detection. The other four classes of remedies address multi-scale texture, out-of-distribution testing, label generation, and conditioning by blur-type. Surprisingly, we discover that custom label generation aimed at resolving spatial ambiguity, ahead of all others, markedly improves object detection. Also, in contrast to findings from classification, we see a noteworthy boost by conditioning our model on bespoke categories of motion blur.We validate and cross-breed the different remedies experimentally on blurred COCO images and real-world blur datasets, producing an easy and practical favorite model with superior detection rates
    corecore