2 research outputs found

    3D point cloud semantic augmentation: Instance segmentation of 360â—¦ panoramas by deep learning techniques

    Full text link
    Semantic augmentation of 3D point clouds is a challenging problem with numerous real-world applications. While deep learning has revolutionised image segmentation and classification, its impact on point cloud is an active research field. In this paper, we propose an instance segmentation and augmentation of 3D point clouds using deep learning architectures. We show the potential of an indirect approach using 2D images and a Mask R-CNN (Region-Based Convolution Neural Network). Our method consists of four core steps. We first project the point cloud onto panoramic 2D images using three types of projections: spherical, cylindrical, and cubic. Next, we homogenise the resulting images to correct the artefacts and the empty pixels to be comparable to images available in common training libraries. These images are then used as input to the Mask R-CNN neural network, designed for 2D instance segmentation. Finally, the obtained predictions are reprojected to the point cloud to obtain the segmentation results. We link the results to a context-aware neural network to augment the semantics. Several tests were performed on different datasets to test the adequacy of the method and its potential for generalisation. The developed algorithm uses only the attributes X, Y, Z, and a projection centre (virtual camera) position as inputs

    Label Efficient 3D Scene Understanding

    Get PDF
    3D scene understanding models are becoming increasingly integrated into modern society. With applications ranging from autonomous driving, Augmented Real- ity, Virtual Reality, robotics and mapping, the demand for well-behaved models is rapidly increasing. A key requirement for training modern 3D models is high- quality manually labelled training data. Collecting training data is often the time and monetary bottleneck, limiting the size of datasets. As modern data-driven neu- ral networks require very large datasets to achieve good generalisation, finding al- ternative strategies to manual labelling is sought after for many industries. In this thesis, we present a comprehensive study on achieving 3D scene under- standing with fewer labels. Specifically, we evaluate 4 approaches: existing data, synthetic data, weakly-supervised and self-supervised. Existing data looks at the potential of using readily available national mapping data as coarse labels for train- ing a building segmentation model. We further introduce an energy-based active contour snake algorithm to improve label quality by utilising co-registered LiDAR data. This is attractive as whilst the models may still require manual labels, these labels already exist. Synthetic data also exploits already existing data which was not originally designed for training neural networks. We demonstrate a pipeline for generating a synthetic Mobile Laser Scanner dataset. We experimentally evalu- ate if such a synthetic dataset can be used to pre-train smaller real-world datasets, increasing the generalisation with less data. A weakly-supervised approach is presented which allows for competitive per- formance on challenging real-world benchmark 3D scene understanding datasets with up to 95% less data. We propose a novel learning approach where the loss function is learnt. Our key insight is that the loss function is a local function and therefore can be trained with less data on a simpler task. Once trained our loss function can be used to train a 3D object detector using only unlabelled scenes. Our method is both flexible and very scalable, even performing well across datasets. Finally, we propose a method which only requires a single geometric represen- tation of each object class as supervision for 3D monocular object detection. We discuss why typical L2-like losses do not work for 3D object detection when us- ing differentiable renderer-based optimisation. We show that the undesirable local- minimas that the L2-like losses fall into can be avoided with the inclusion of a Generative Adversarial Network-like loss. We achieve state-of-the-art performance on the challenging 6DoF LineMOD dataset, without any scene level labels
    corecore