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Abstract

3D scene understanding models are becoming increasingly integrated into modern

society. With applications ranging from autonomous driving, Augmented Real-

ity, Virtual Reality, robotics and mapping, the demand for well-behaved models

is rapidly increasing. A key requirement for training modern 3D models is high-

quality manually labelled training data. Collecting training data is often the time

and monetary bottleneck, limiting the size of datasets. As modern data-driven neu-

ral networks require very large datasets to achieve good generalisation, finding al-

ternative strategies to manual labelling is sought after for many industries.

In this thesis, we present a comprehensive study on achieving 3D scene under-

standing with fewer labels. Specifically, we evaluate 4 approaches: existing data,

synthetic data, weakly-supervised and self-supervised. Existing data looks at the

potential of using readily available national mapping data as coarse labels for train-

ing a building segmentation model. We further introduce an energy-based active

contour snake algorithm to improve label quality by utilising co-registered LiDAR

data. This is attractive as whilst the models may still require manual labels, these

labels already exist. Synthetic data also exploits already existing data which was

not originally designed for training neural networks. We demonstrate a pipeline

for generating a synthetic Mobile Laser Scanner dataset. We experimentally evalu-

ate if such a synthetic dataset can be used to pre-train smaller real-world datasets,

increasing the generalisation with less data.

A weakly-supervised approach is presented which allows for competitive per-

formance on challenging real-world benchmark 3D scene understanding datasets

with up to 95% less data. We propose a novel learning approach where the loss
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function is learnt. Our key insight is that the loss function is a local function and

therefore can be trained with less data on a simpler task. Once trained our loss

function can be used to train a 3D object detector using only unlabelled scenes. Our

method is both flexible and very scalable, even performing well across datasets.

Finally, we propose a method which only requires a single geometric represen-

tation of each object class as supervision for 3D monocular object detection. We

discuss why typical L2-like losses do not work for 3D object detection when us-

ing differentiable renderer-based optimisation. We show that the undesirable local-

minimas that the L2-like losses fall into can be avoided with the inclusion of a

Generative Adversarial Network-like loss. We achieve state-of-the-art performance

on the challenging 6DoF LineMOD dataset, without any scene level labels.



Impact Statement

The work presented in this thesis addresses fundamental problems in 3D computer

vision. Specifically, this thesis looks at how to train machine learning models with

a relaxed requirement on collection of ground truth 3D data. Access to high-quality

ground truth data is a fundamental bottleneck for both academic researchers as well

as industry companies looking to deploy 3D machine learning systems. As such,

the potential impact of the work presented spans both academia and industry alike.

Within academia, several pipelines are established which can act as an initial

starting point for new and existing researchers. The methods described within this

thesis clearly outline practical steps which can be taken to train 3D machine learn-

ing models without undertaking large-scale ground truth data labelling exercises.

The potential impact to an academic researcher here is two-fold. Firstly, the meth-

ods presented can undoubtedly be improved and refined. This offers an established

starting point to further address the problems discussed. Secondly, academic re-

searchers often suffer from a lack of ground truth training data. This is due to most

large-scale data collections being undertaken by private companies, which retain

the data for internal use. By employing the methodologies laid out in the subse-

quent chapter’s, researchers can overcome some of the data limitations, allowing

for accelerated research on other areas where data is not the main focal point.

Outside of academia this thesis has a potential impact in the training of produc-

tion 3D machine learning models. Whilst large companies can often afford large-

scale ground truth labelling exercises, this is usually not the case for smaller, and

especially new, companies. By utilising the research presented in this thesis compa-

nies can potentially compete with companies that have an order of magnitude larger
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labelling budget. This would be especially true for non-governmental organisations

which due to their non-profit nature often cannot afford to undertake expensive data

collections.

The potential impact of this thesis is not specific to any industry, or geographi-

cally bound. As such, the impacts described above could be applied across multiple

industries as well as internationally.
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Chapter 1

Introduction

1.1 Background

Over the past decade there has been a significant increase in the use of deep learning

to solve visual perception tasks. This is largely owed to advancements in algorithm

development, computer hardware and the ability to store and transfer very large

quantities of data. As a result, technologies such as facial recognition, automated

medical imaging and large-scale image retrieval are commonplace in society. A key

commonality in visual perception tasks that are experiencing a high level of success

is that they tend to operate in the 2D domain. More specifically, they assume that

the 3D world in which they represent has been projected onto a 2D plane. There

is still, however, a very large number of tasks that require processing 3D geomet-

ric representations. Such problems are typically sub-categorised as 3D computer

vision.

3D computer vision is concerned with the long-standing problem of how to

understand and infer meaningful information from 3D representations of the world.

Popular tasks include perception and mapping problems in robotics and autonomous

driving, Augmented Reality (AR), Virtual Reality (VR), automated national map-

ping and 3D reconstruction. In a world where 3D computer vision is ”solved” we

would expect the entire world to be completely mapped, knowing exactly where

everything is in a 3D space, for both real-time on-board applications (e.g. robotics,

autonomous vehicles, AR/VR) and off-board applications such as national and in-
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ternational asset databases. Whilst this is still an elusive goal, progress is being

made thanks to advancements in 3D data capture.

Capturing 3D data through passive sensors is (almost) as old as capturing 2D

data (e.g., a photograph). In 1851 French inventor Aimé Laussedat utilised the

newly invented camera for mapmaking and surveying (Encyclopedia Britannica,

2021). The technique of using images to determine 3D information, known as pho-

togrammetry, became the standard approach for national relief mapping. The term

photogrammetry is dervied from three Greek works: photo meaning ”light”, gram

meaning ”drawn” and metry meaning ”measuring”. This technique that was both

invaluable and rapidly developed during both World Wars 1 and 2. Whilst pho-

togrammetry is still widely used, traditional approaches which require large and

heavy machinery (e.g., stereoplotters) and trained human operators have been su-

perseded by fully autonomous computer vision-based pipelines. Although the un-

derlying mathematics remains relevant, arguably the largest advancement allowing

for automated photogrammetry is the ability to detect the same world feature in

two images, something that until recently could only be achieved by humans. The

seminal work by Lowe (2004) expressed image points as vectors, known as fea-

ture descriptors, describing the context of the pixel. Feature descriptors are then

matched across images by finding descriptors with a close (Euclidean) distance in

feature space. The feature descriptor known as Scale-Invariant Feature Transform

(SIFT) has proved to be robust against mild variances expected between image cap-

ture (e.g., light, perspective change etc.). Advancements in feature point matching

have enabled the now widely adopted framework of Structure-from-Motion (SfM)

(Ullman, 1979; Schonberger, Frahm, 2016; Andrew, 2001). Broadly speaking, SfM

is a photogrammetric technique which samples 2D surfaces of 3D geometry from

either a sequence of images from a single camera, or a single image from a sequence

of cameras. Each 3D measurement p ∈ R3 contains an x, y and z coordinate in an

arbitrary 3D space. A set of points p is called a Point Cloud P = {p1, p2 . . . pn}. In

practice much more per-point information is stored for example the red, green and

blue values from pixels used to determine the spatial coordinates of the point. A
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point cloud can therefore be defined as P ∈ R3+k where k are additional features.

An alternative approach to capturing 3D with passive sensors is the use of ac-

tive sensors. Unlike passive sensors which require external illumination (i.e., light),

active sensors generate their own energy. An example of an active sensor is a Light

Detection and Ranging (LiDAR) instrument. LiDAR can capture the 3D geometry

of a scene by sending pulses of light out from a central emitter. By measuring the

time taken for the light to bounce off a surface and arrive back at the sensor the

distance d can be determined as d = ct
2 where c is the speed of light and t the mea-

sured time. By simultaneously measuring the direction of the light path (e.g., θ and

φ ) a 3D point cloud can be obtained. Advantages of active approaches include the

ability to capture environments with no light or when visibility is poor (i.e., clouds).

Other active sensing instruments include Radio Detection and Ranging (radar) and

Sound Navigation and Ranging (sonar) where radio and sound waves are emitted

respectively.

1.2 Definition of a Point Cloud

Although in its most general form we can define a point cloud P as a set of points

{P : p ∈ R3+k}, this is too general for the type of point clouds we collected from

passive and active scene reconstruction techniques. This is due to the fact that all

observations are on the surface of the 3D objects we measure. Instead, each point

p is a sampling from a 2D surface which arises at the boundary of a 3D object.

For example, a LiDAR scan of a 3D solid ball Φ would capture samples p of the

boundary sphere Θ at the boundary of Φ. Any point p could be defined on Θ using

a 2D coordinate system (i.e., Latitude Longitude), therefore p ∈ R2. In practice,

defining a local 2D coordinate system requires prior knowledge of the surface p is

sampled from. Furthermore, we also require knowledge of which surface p belongs

to. As such p is defined using a 3D coordinate system containing all surfaces present

in the scan.
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1.3 3D Scene Understanding
Both passive and active sensors have a plethora of advantages and disadvantages.

As such, which type of sensor to use is largely driven by the task at hand. What both

have in common is the representation of geometric data capture. Both represent a

scene S and a point cloud P3+k. In the following chapters a point cloud is treated

independently from the sensor in which it is captured. Instead, the focus is on ap-

proaches for creating a mapping f : P → X where X is some desired semantically

meaningful information for which we wish to extract from P , ultimately informing

us about S. This problem we define as 3D scene understanding. This is different

from the broader field of 3D computer vision which would encompass for exam-

ple 3D reconstruction (e.g., SfM) or single object classification. Instead, 3D scene

understanding is concerned with extracting semantics from a 3D scene representa-

tion. We can further sub-define 3D scene understanding into the following tasks:

scene classification, per-point classification (also known as semantic segmentation),

instance semantic segmentation and object detection. More complex tasks further

address the relationship between objects (e.g., car is on the ground), as well as map-

ping the scene to a coherent text description explaining what the scene contains

(Chen et al., 2021) or vice-versa (Chen et al., 2020).

1.4 Challenges in 3D Scene Understanding
Although, arguably not as popular as 2D image understanding, 3D scene under-

standing has benefited from a significant research effort for as long is its 2D counter-

part. There are many reasons why 3D scene understanding is more complex and less

attractive to researchers than 2D image understanding for comparable tasks.

Dimensionality As dimensions increase, so does Degree of Freedom (DoF) of the

problem and therefore complexity. For example, take a common object detection

task; “Where is the chair in the room?”. To answer this question in a 2D setting

we could predict a common parametrisation (Girshick, 2015; Zhou et al., 2019a):

x,y image-space coordinates and height and width of the object in pixels. Our func-

tion f can then be defined as f : I ∈ Ri, j,c → R4 where c is the image channels.
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The 3D equivalent would require an additional z-coordinate and depth length. We

would then need to map f : Gx,y,z,c → R6 where G is some geometric representa-

tion of the scene (e.g., a point cloud). A more unfavourable parameterisation could

regress directly the bounding box points. This would give us f : Ix,y,c → R8 and

f : Gx,y,z,c→ R24 for 2D and 3D respectively.

Data representation In the above paragraph we write our 3D geometric represen-

tation as G, this is because there is no definitive representation for 3D data (unlike

a discrete array for 2D images). There are a number of proposed 3D representa-

tions, however, the most common can be categorised as: point cloud, volumetric

and polygonal mesh. We will briefly discuss each in turn.

As discussed above, at their most basic, a point cloud P can be defined as a

set of points p with an x, y and z coordinate, such that P ∈ Rn×3 where n is the

number of points. Whilst point clouds are a very flexible 3D representation, they

have several limitations. Firstly, point clouds are unstructured data types. This

means that pi and pi+1 can have no assumed spatial relationship. This is funda-

mentally different from a structured data type such as images where pixel pi j and

pi+1, j are spatially relevant (i.e., pixels close together are relevant to one another).

Secondly, point clouds are continuous representations. For example, two pixels pi

and pi+1 have a known distance d = ||pi, j− pi+1, j||1 = (1,0) in image space. In

contrast, two points pi and pi+1 can have any distance in Euclidean space. This

prevents point cloud processing algorithms from exploiting Convolutional Neural

Networks (CNN), which have been the fundamental operation behind the success

of 2D computer vision. In recent years, this problem has been largely overcome (Qi

et al., 2017b; Hermosilla et al., 2018; Thomas et al., 2019). However, point-based

convolution operators still require neighbourhood searches at each stage in a neural

network significantly hindering their computational efficiency. This is explained in

further detail in Chapter 2.

Another key limitation of point clouds is that two points close in world-space

have no indication whether they are both samples from the same surface. As such

we would refer to point clouds as an unordered data type. An alternative represen-
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tation which includes connectivity is the polygonal mesh representation. A mesh

M is made up of the following: vertices v ∈ R3, edges e ∈ N2 and faces f ∈ N≥3.

A vertex v can be thought of as a point p in a point cloud. An edge e contains

2 indexes indicated a connection between two vertices. A face f contains a list of

n≥ 3 indexes indicated which vertices create a closed loop. This has two significant

advantages. Firstly, rendering software can assign face colours and normals to each

face to give the appearance of a watertight model. Secondly, mesh-based neural

networks have access to the connectivity of vertices, so it is easier to create local

features on vertices that are connected and not just close in world-space (Schult

et al., 2020). The key drawback in the mesh representation is the ability to acquire

the connectivity. Whilst there are many algorithms for automatic mesh generation

from point cloud (Edelsbrunner et al., 1983; Bernardini et al., 1999; Kazhdan et al.,

2006), the problem is far from trivial. As such even state-of-the-art mesh algo-

rithms contain many incorrect connections. Due to this required post-processing

stage, meshes are not considered a raw data type.

Point clouds typically live in a continuous domain. However, many computer

vision techniques assume data points lie in a discretised grid. Too address this,

discrete volumetric representations are proposed. The most common being a voxel

grid. A voxel grid is defined on a regular 3D grid, in the same way an image is

defined on a regular 2D grid. As such we can define a voxel grid V ∈ Ri, j,k,c.

The most simple form of voxel grid is a binary occupancy grid where c ∈ {0,1}

denotes if the voxel contains a point (1) or not (0). By representing 3D points on a

discretised regular grid all operators common in 2D image processing (e.g., image

kernels) can be easily extended to 3D. This allows for example a 3D CNN which

works with the same fundamental principles as a standard 2D CNN. Whilst this

might seem an attractive prospect, a key limitation of voxel-based representation

is that the storage and computation cost grows cubically with the grid resolution.

As such learning large, deep features (e.g., through a 3D CNN) becomes unfeasible

with current computer hardware.
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Figure 1.1: Visualisation of the three main 3D representations: point cloud (left), mesh
(middle) and voxel grid (right). Depicted is the ‘Stanford Bunny’, provided
by the Stanford Computer Graphics Laboratory.

Data Collection of 3D data has made significant progress in the past two decades,

this is due to advancements in both passive and active collection methods. As dis-

cussed in Sec. 1.1, modern feature point representations have enabled largely au-

tomatic “3D from 2D” pipelines with passive sensors (e.g., off-the-shelf cameras).

There are, however, two main caveats when compared to 2D data capture. Firstly,

collection of 2D images can be processed on-board (i.e., on the camera), due to

the increased computational demands, this is less common for 3D. Large block

adjustments of 2D images required for photogrammetry are both computationally

and time consuming. A typical workflow would require uploading the captured 2D

images onto a powerful desktop computer and processing the data in specialist soft-

ware. Secondly, capturing 2D images suitable for a photogrammetric pipeline is far

from trivial. To obtain a good 3D reconstruction the user must collect high quality

images, with a sufficient overlap for the entire scene. Such acquisition can be rel-

atively easy when modelling, for example, linear topologies for aerial topographic

mapping. This is path flight paths can be pre-computed and using on-board GPS,

flown autonomously. However, for the majority of other scenarios, such assump-

tions cannot be made. Examples include non-linear topologies, or environments

where GPS is either unreliable or not available such as in inner-cities and indoors

respectively. As a result of this, even highly experienced professional operators

experience difficulties.

Active sensors have reduced in cost and increased in resolution and incredi-
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ble rates. For example, LiDAR sensors such as the Livox Mid-40 series can be

purchased for only $600 and have the ability to collect 100,000 points per second.

Whilst this is undeniably cheaper than the entry price point only a decade ago at

around $20,000, this is still considerably more expensive than an entry-level 2D

camera (≈$50). Despite this, the addition of a LiDAR sensor on higher end models

of the Apple iPhone and iPad, suggest casual 3D capture at the scale of 2D images

will be likely in the future.

Labelling One of the key contributors to the success of deep learning for computer

vision is the ImageNet dataset (Deng et al., 2009). A characteristic of deep learning-

based models is the requirement for very large datasets for training. ImageNet pro-

vides over 14 million manually labelled images for common object categories (e.g.,

cat, dog, house etc.) to train image classification networks. However, labelling

complexity scales exponentially with dimensions. An image classification model

is defined as f : Ih,w,c→ Rk where k is the number of classes. Labelling therefore

requires simply indicating for each image I which class k it belongs to. A sim-

ple user-interface can enable very fast, easy labelling for even inexperienced users.

A natural next step in labelling complexity is 2D object detection. Here the user

must position n boxes over objects of interest, a 2D object detection is therefore

f : Ih,w,c → Rn,4 using the i, j,h,w parameterisation (Girshick, 2015; Zhou et al.,

2019a). This allows for the possibility of missing objects in the scene (i.e. only

labelling 3 out of 4 cars), as well as introducing a per-object error ||b− b̂||22 where b

is the ideal box position and b̂ is the labelled position for each DoF. When labelling

transitions to 3D we incur two additional complexities. Firstly, we have a higher

DoF and therefore more potential error sources. However, perhaps more signifi-

cantly is the additional burden of moving from a 2D input to 3D input. Whereas

labelling in 2D can be achieved from a single view on a computer screen, labelling

in 3D requires the user to explore the 3D space through 3D visualisation software.

3D visualisation software requires an experienced operator and adds a considerable

amount of time consumption. While a 2D bounding box labelling may take in the

order of 10’s of seconds per image, 3D bounding box labelling takes in the order
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of minutes for even a simple scene. As a result, collecting 3D labelled data is con-

siderably more expensive, and often lower quality. This has a major impact in the

ability to train very large, robust neural networks with available data.

In this thesis we argue that this labelling constraint is a primary bottleneck in

the development of 3D scene understanding. Although 3D data is more difficult and

costly (both in terms of money and time) to collect than 2D data, 3D data can still be

collected at several orders of magnitude higher than what is financially feasible to

label. As such we argue finding alternative approaches to model training where per-

object labelling is not required is of paramount importance to seeing 3D computer

vision models as commonplace as their 2D counterparts.

1.5 Thesis Outline and Contribution
In this thesis we aim to address the bottleneck of requiring labels for training 3D

scene understanding deep learning-based models 1. Through a series of research

studies, we look at the following alternative approaches:

Exploiting Existing Data - Chapter 3

For many mapping related tasks, huge manual labelling efforts have already

been undertaken for centuries. This is usually the result of national mapping agen-

cies such as the Ordnance Survey (UK), U.S. Geological Survey (United States) or

Institut Géographique National (France). In this chapter we utilise such data for

automatic building detection from aerial LiDAR data. A key issue with mapping

data that was not designed for model training is that it is often very course. Consid-

ering this, we propose a method for improving course publicly available mapping

data to provide accurate per-pixel segmentation masks for building detection and

segmentation. In doing this, we suggest existing mapping data, albeit sometimes of

course quality, can be used to automate the national mapping process.

Synthetic Data - Chapter 4

1For brevity we refer deep learning-based models simply as models for the remaining chapters
as all of our efforts are focused on such models.
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Another approach which avoids reformulating the training scheme of a net-

work, is to use synthetic data as training data. In this chapter we outline a simple yet

effect approach for generating synthetic point clouds from a virtual Mobile Laser

Scanner (MLS) in a world we dub ‘SynthCity’. A key advantage to create a point

cloud in a synthetic world is that object and instances labels come for free. Our

pipeline is simple and easily implemented with standard open-source software.

Weakly-supervised - Chapter 5

An alternative axis of research is to reduce the requirement of labels. In this

chapter we propose a novel training procedure which performs 3D object detection

with up to 95% less data. We achieve this by first learning a loss function which can

be used to train a larger network on raw, unlabelled data. Furthermore, once our

lightweight loss function is learnt our main network can continue to be trained on

new unlabelled scenes from a similar domain. Such a reduction offers a significant

relief on the burden of labelling, and experimentally we show with little sacrifice

on performance.

Self-supervised (Analysis-by-Synthesis) - Chapter 6

In many scenarios, geometric object representations are available of 3D ob-

jects we wish to find in 2D image, however, 3D labels (e.g., position, orientation,

colour etc.) are not. This problem is known as monocular 3D object detection and

defined as Ih,w,c → Rn,7 where n is the number of objects in the scene which are

parameterised by x,y,z,h,w,d,θ . We build a simple network to predict an explicit

scene parameterisation (e.g., position, orientation colour etc.) directly from a 2D

image. We train this through analysis-by-synthesis, by rendering the geometric ob-

jects with the predicted scene parameterisation. We identify why a simple L2-like

loss always fails and solve this with a novel training strategy using a critic network,

akin to those found in a Generative Adversarial Network (GAN).

Finally, in Chapter 7 an in-depth discussion is undertaken comparing and con-
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trasting each of the proposed approaches in Chapters 3 - 6. Recommendations for

future research is outlined with empirical justifications witnessed in the preceding

chapters.

The key contributions of this thesis are therefore as follows:

1. An approach for refining publicly available mapping data for building detec-

tion in aerial LiDAR and RGB data.

2. Demonstration of a simple and effective pipeline for generating high-quality

synthetic MLS data, with per-object and per-instance ground truth labels.

3. A novel training procedure utilising a learnt loss function which can reduces

the requirement of labels by up to 95% for 3D object detection in point clouds.

4. A novel training procedure utilising a GAN-like critic to achieve self-

supervised monocular 3D object detection from only a per-object geometric

representation as supervision.



Chapter 2

Literature Review

3D scene understanding is a very broad field encompassing many tasks and appli-

cations. The relevant literature therefore depends on what scene understanding task

is being performed. Popular tasks would include: room layout estimation, object

detection, per-point classification 1. However, this is far from a comprehensive list.

Considering this, in this chapter we primarily focus on the tasks of per-point classi-

fication and object detection of point clouds (which we refer to as classification and

detection for brevity). These are chosen as they are relevant to the work presented

in this thesis.

2.1 Classical Machine Learning
Whilst it would of course be attractive for classification and detection to be per-

formed using deterministic functions, deriving a clear and robust set of rules and

logic is generally not possible for complex environments. A solution to this prob-

lem is to design a framework where an algorithm can learn the complex functions

from data. We goal of the machine learning algorithm is to learn a mapping function

f : Gk → Y where G is some geometric representation and Y is the desired output

(e.g., positions and extents of cars in a road scene). Learning this mapping generally

(in the supervised setting) requires having examples of both G and the correspond-

ing outputs Y . To obtain Y manual labelling of scenes is performed. In common

1In this thesis we refer to the task of assigning an object class label to each point of a point cloud
as per-point classification. In many works this is also referred to as semantic segmentation. Instead,
we reserve the term of semantic segmentation for the task of per-pixel classification in images.
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terminology we refer to G as the input and Y as the label.

2.1.1 Per-point classification

The problem of classification is to assign for every point p ∈ P a class c, indicating

the class of object who’s surface the point was sampled from. A key issue with

this problem is that a single point itself is unlikely to contain enough information

to establish which class it belongs to. To account for this problem, it is standard

procedure to classify each point based on its neighbourhood U where p ∈ U ⊆

P . The most common solution to obtaining U is to perform a k-nearest based on

Euclidean distance (Lalonde et al., 2006; Weinmann et al., 2014). For example,

when k = 1:

U = {min
pi∈P

n

∑
i=1
||p− pi||22}. (2.1)

Another alternative is to simply collect all points within a radius r of p (Lee,

Schenk, 2002).

U = {pi ∈ P : ||p− pi||22 < r} (2.2)

Both methods have advantages and disadvantages for obtaining neighbour-

hoods in sensed point clouds 2. Sensed point clouds often contain varying densities

of points, this is due to issues such as occlusion as well as being an artefact from

angular scanners. To address this Lalonde et al. (2006); Weinmann et al. (2014)

propose to estimate an optimal value of k based on a radius search. This avoids

assuming a priori knowledge of the scene. It has also been shown to be effective to

collect multiple neighbourhoods at varying scales to allow for multi-scale feature

representations (Weinmann et al., 2015; Hackel et al., 2016).

Computing a feature descriptor d from neighbourhood U is then performed by

computing a local 3D covariance matrix S ∈ R3×3:

2A sensed point cloud is one that has been captured using either an active or passive sensor in a
real-world environment, as opposed to sampling from a known surface.
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SU =
1
k

k

∑
i=1

(pi− p̂)(pi− p̂)T (2.3)

where p̂ = argmin
p

∑
k
i=1 ||pi− p|| (Becker et al., 2017).

From S the three eigenvalues λ1,λ2,λ3 which correspond to an orthogonal sys-

tem of eigenvectors are determined. It is shown that many useful features can be

computed directly from λ1,2,3. For example: linearity λ1−λ2
λ1

, planarity λ2−λ3
λ1

, sur-

face variance λ3, scatter λ3
λ1

and omnivariance (λ1λ̇2λ̇3)
1
3 (Weinmann et al., 2015;

Hackel et al., 2016). Other useful features include point positions, point colours,

neighbourhood density and vertical difference (Becker et al., 2017). For each point

a feature descriptor d is constructed by concatenating each feature on the point

channel dimension. The final mapping is therefore f : Rn×d → Nn×1, or more sim-

ply, for each point pi ∈ P we must learn the mapping f : di→ {c ∈ N|0 < c≤ K},

where K is the total number of classes.

Once the per-point features descriptors d have been established, a wide-range

of existing machine learning models can be used to learn the mapping. These in-

clude (although are not limited to) Maximum Likelihood classifiers (Lalonde et al.,

2005), Support Vector Machines (Secord, Zakhor, 2007), AdaBoost (Lodha et al.,

2007), Gradient Boosted Trees (Becker et al., 2017), Random Forests (Chehata

et al., 2009; Weinmann et al., 2015; Becker et al., 2017) and Bayesian Discrimi-

nant Classifiers (Khoshelham, Oude Elberink, 2012). Spatial correlations between

classes can also be modelled using discriminative probabilistic approaches such as

Conditional Random Fields Niemeyer et al. (2012), which in turn can improve label

smoothness in local areas. The performance of classical models is directly corre-

lated to the richness of the feature descriptor. As such, the predominant line of

research when using classical machine learning models is to find richer and more

expressive features.

2.1.2 Object Detection

3D Object detection aims to extract from a scene S represented by some geom-

etry G, all objects O of interest. The problem is generally defined as finding the
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mapping f : G → O ∈ RM×d where M is the number of objects in S and d is some

parameterisation of each object.

Early work focused on the task of surface matching, where the aim is to match

known surfaces in a database and sensed surfaces in a scene. This involved finding

representations of local areas of point clouds which could be matched against repre-

sentations of known surfaces. Representations include measuring surface curvature

(Chua, Jarvis, 1996) and surface patches (Faugeras, Hebert, 1986). Johnson, Hebert

(1999) present a method where spin images are collected within the scenes. To im-

prove the efficiency and the performance principal component analysis is used to

compress the spin images to make more compact and robust representations.

Another popular approach involves fitting parametric models to the point

cloud. This has shown to be very effective in detecting roofs (Elberink, Vossel-

man, 2009; Kluckner, Bischof, 2010; Lafarge et al., 2008). In these works, object

detection was used as an initial stage for the downstream task of building reconstruc-

tion. Region growing algorithms are also shown to be effective for object detection

of planar surfaces (Rutzinger et al., 2009) and has subsequently been extended to

detection of individual trees Rutzinger et al. (2010).

Golovinskiy et al. (2009) propose a method for multi-class object detection in

3D point clouds of urban environments. The system has four key stages: segment-

ing and subtracting background, generation of object proposals, object feature de-

scription and classification. As an extension to Golovinskiy et al. (2009), Velizhev

et al. (2012) propose a method replacing the need for supervision by using implicit

shape models. This has the advantage of requiring significantly fewer labelled data.

Another advantage of this approach is that it operates on part-based representations

which is more appropriate for active sensed 3D point cloud which suffers from oc-

clusion, noise, and varying point density. Random key-points are extracted from

connected components and matched to a geometric word in a dictionary. Each key-

point then casts a vote for which object it belongs too. Similar approaches were

taken by Knopp et al. (2010, 2011) which built on the generalised Hough trans-

form proposed in Leibe, Schiele (2006) for 3D data. The idea of hough transform



2.2. Deep Learning on Unordered Sets 16

based voting still achieves state-of-the-art results (Qi et al., 2019) in modern deep

learning-based systems.

2.2 Deep Learning on Unordered Sets
Deep learning methods have been developed for many years (Rumelhart et al., 1985;

LeCun et al., 1998), however, it wasn’t until the 2012 ImageNet competition (Deng

et al., 2009) that they started to become the mainstream direction for computer vi-

sion research, with the promising results from the AlexNet architecture (Krizhevsky

et al., 2012). Vinyals et al. (2015) is an early example of applying deep learning to

point sets. However, the focus of the paper did not consider point clouds as an ex-

ample of a point set. Instead, the focus of these papers was founded in generic sets

and not 3D scene understanding.

2.2.1 Per-point Classification

The seminal work of Qi et al. (2017a) was the first significant deep learning-based

network architecture to directly consume unordered point sets for 3D scene under-

standing tasks. The network PointNet demonstrated state-of-the-art performance at

the tasks of both object-level classification3 and per-point classification. For object-

level classification PointNet learns a spatial encoding for each point which are ag-

gregated into a global point cloud signature. Features are generated using a multi-

layer perceptron (MLP) and aggregated using a single symmetric function, max

pooling, which ensures the network is permutation invariant. The network learns a

set of functions that select interesting and informative key points from a subset of

points, encoding this information in each layers feature vector. To extend this to

per-point classification features are passed into a sub-network which concatenates

aggregated global features and per-point local features.

A key limitation to PointNet is that it does not take into account spatial rela-

tions between points and therefore does not capture the local structures induced by

the metric space in which the points occupy. Qi et al. (2017b) address this prob-

3The original authors refer to whole object classification as classification, and per-point classi-
fication as semantic segmentation. Instead, here we refer to them as object-level classification and
classification
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lem with PointNet++. Taking inspiration from 2D-based CNN’s where inputs cap-

ture features at progressively larger scales along a multi resolution hierarchy. Point

sets are partitioned into overlapping local regions by a distance metric. Features

are then extracted from a progressively increasing neighbourhood size. Whereas

small neighbourhoods capture fine grain local features (i.e., surface texture), large

neighbourhoods capture increasingly global geometric features. The original Point-

Net architecture is used for feature extraction. To generate overlapping partitions a

neighbourhood ball is defined where a given point is used as the centroid location

and radius dependant on the hierarchical scale parameter. The farthest point sam-

pling algorithm is used to select the center points, ensuring an approximately even

coverage of the whole point set. The authors structure the process as three layers:

the sampling layer defines a point set from the global point set, a grouping layer

constructs the local region of points within the defined sample, finally the PointNet

layer uses a mini-PointNet to extract local region features as feature vectors. When

selecting points by neighbourhood size, point density plays a significant role. Un-

like images, where an image is a uniform grid, point cloud density can vary across a

scene, meaning uniform density cannot be assumed. PointNet++ demonstrates that

unlike in 2D CNNs where small kernels are preferred, when point density is sparse,

larger point samples are required for robust pattern extraction.

Since PointNet(++) there has been an influx in research operating directly on

unordered point clouds. In particular there has been a significant effort to incor-

porate a spatial convolution operator within the network. A key example of this

is SplatNet (Su et al., 2018). SPLATNet (SParse LAT-tice Network) takes inspi-

ration from the permutohedral lattice (Adams et al., 2010) where convolutions are

performed on sparse data in high dimensions. This is done efficiently by using

sparse bilateral convolutional layers, which use indexing structures to apply convo-

lutions only on occupied parts of the lattice. A key difference to PointNet++ is that

max pooling layers are not used to aggregate information through multiple scales.

Instead, flexible specifications of the lattice structure are designed to enable hier-

archical and spatially aware feature learning. In essence, points are mapped onto
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bilateral convolutional layers using a barycentric interpolation. Once convolutions

are performed in this higher dimensional lattice, the results then undergo barycen-

tric interpolation to be mapped back to the original points. These three processes

are referred to as; Splat, Convolve and Slice respectively. Also unique is the ability

to combine 2D features from corresponding images to strengthen shared features.

This is particularly useful for applications such as photogrammetry and MLS where

3D point clouds and corresponding registered 2D images are available. Features

for a corresponding 2D image is first past through a CNN feature extractor prior

to a BCL layer. The BCL then maps 2D features onto a 3D lattice where after 2D

and 3D features can be concatenated. The joint features are further passed through

two 1×1 convolutional layers where finally a softmax layer enables point wise class

probabilities.

Another key challenge in raw point cloud processing is the natural non-uniform

distribution of real-world data. This can occur from occlusions, distance from sen-

sor and sensor noise to name just a few. These characteristics mean applying a

spatial convolution is very challenging. (Hermosilla et al., 2018) address this by

proposing a novel method that first represents the convolution kernel as a MLP.

Next the convolution is phrased as a Monte Carlo integration problem. Lastly,

Poisson disk sampling is incorporated as a scalable means of hierarchical feature

learning. The authors demonstrate by estimating the convolutional integral with

Monte Carlo computation, with proper handling of the variance in underlying point

sampling density, state-of-the-art performance can be achieved for model and point-

wise classification. By implementing this approach, the network gains a level of

sampling invariance, whereby the convolution becomes invariant to both the or-

der of the points and the variable number of neighbours for each sampled point.

Furthermore, the use of Poisson disk sampling for point hierarchy construction (as

opposed to the more commonly used farthest point sampling using in PointNet++)

demonstrates a higher level of scalability and allows to bound the maximal number

of samples in a receptive field.

PointCNN (Li et al., 2018b) also uses convolutions directly on the point cloud.
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Here, a k nearest neighbours is used to find spatially local points to introduce point

order invariance. The network uses an MLP on the derived local point neighbour-

hood and learns a transformation X of size k× k on points {pi|0 < i≤ k}, which is

used to weight and permute the input point features. The latter has a similar effect

of PointNet’s T-Net which attempts to rotate the point cloud into canonical order.

Convolutions are subsequently applied on the X -transformed features. PointCNN

further expresses the importance for hierarchical feature representations for effec-

tive point cloud classification. Although conceptually simple, PointCNN achieves

85.1% on the ScanNet uniform benchmark dataset. In a similar attempt to address

the lack of spatial convolution Thomas et al. (2019) present KPConv offering a de-

formable convolution operator. Each local neighbourhood is convolved by applying

the weights of the nearest distance kernel point in the neighbourhood. Originally

these are set uniformally, which in essence is a pseudo local voxelisation. However,

the position of the kernel points are also learned in the network allowing the points

to learn the topology of the local neighbourhoods and deform the voxel grid to suit

the such a topology. Similar to Hermosilla et al. (2018), poission disk sampling

is used to sub sample the points and a radius search is performed to gain the local

neighbourhoods for pooling.

2.2.2 Object Detection

Early attempts to apply deep learning-based networks to point cloud data involved

projecting the point cloud into a perspective view and applying 2D image processing

techniques (e.g. CNN’s) (Premebida et al., 2014; González et al., 2015; Li et al.,

2016). Whilst this enables the use of mature 2D-based object detectors (Girshick,

2015; Ren et al., 2015; Redmon et al., 2016), the 2D-3D projection invariably looses

information on the projection plane dimension. Most common, this is in the up

(gravity-aligned) direction (Beltrán et al., 2018) or forward (camera-view) direction

(Wu et al., 2018, 2019). Other methods first convert continuous, unordered point

clouds to ordered and discreet voxel grids (Fig. 1.1) (Song, Xiao, 2014; Wang,

Posner, 2015; Engelcke et al., 2017; Lahoud et al., 2019). This enables the use

of the 3D counterparts of 2D CNN’s, however, is memory inefficient and does not
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scale to large scenes with modern computer hardware (Qi et al., 2019).

A step closer to direct 3D point cloud object detection is the use of RGB-D

data (Qi et al., 2018). RGB-D data is the concatenation of RGB and a depth chan-

nel where each pixel I i, j represents distance D along the camera forward (e.g. z)

direction of point pi in camera-space. A point cloud P can then be created using

Eq. 2.4. Using a 2D-based detector, 3D proposals are generated as the points in

the camera view frustum. PointNet Qi et al. (2017a) is then applied on the subset

S ∈P to perform a binary classification to remove foreground and background clut-

ter. PointNet is therefore defined as f : S ∈ R3+k → S ∈ N = {0,1} where k ∈ R3

corresponding to RGB value of the respective pixel. (Hou et al., 2019) also operate

on a RGB-D input for instance-level object detection. The fusion of RGB and 3D

geometry features are shown to be complementary to generating final bounding box

proposals.

P = (
x
fx
× z,

y
fy
× z,z) (2.4)

where fx and fy is the focal length in pixels for x and y respectively.

In this section, we instead look at approaches where object detection is per-

formed directly on point clouds. VoxelNet (Zhou, Tuzel, 2018) proposed one of the

first end-to-end networks to map directly from point cloud to 3D bounding boxes.

VoxelNet, defines a neighbourhood of points by dividing the input point cloud into

equally spaced 3D voxels. A feature representation is then learnt for each neigh-

bourhood, similar to the grouping module in Qi et al. (2017b). To handle for varying

point density, and to improve model efficiency, a random sampling of points is taken

for each neighbourhood (voxel). Direct 3D bounding box regression is proposed by

Yang et al. (2019) which adapts a similar anchor-free regression to CenterNet (Duan

et al., 2019). Using standard MLP’s branches after a shared point-based encoder is

shown to be very effective and is the primary motivation for the bounding box pre-

diction architecture presented in Chapter 5.

Qi et al. (2019) build on the idea of Hough voting (Knopp et al., 2010, 2011;

Leibe, Schiele, 2006), where the Hough transform is learnt through a neural network
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in what they call deep Hough voting. A PointNet++ (Qi et al., 2017b) encoder-

decoder backbone is utilised before each point votes for its own objects center.

Through a clustering module, seed points that cluster together are grouped and

passed through a shared object proposal and classification network to obtain 3D

bounding box proposals. As with most 2D and 3D object detectors (Hou et al.,

2019; Qi et al., 2019) the total number of proposals K is set such that K ≥ N where

N is the number of ground truth objects in the scene. To obtain the final propos-

als Non-maximum Suppression (NMS) is applied to overlapping boxes (Girshick,

2015).

2.3 Transfer learning
Training a neural network with learnable weights requires initialisation of the

weights. Typically, the weights are initialised from some random distribution (e.g.,

normal, uniform etc.). More advanced strategies such as Glorot (Xavier uniform)

(Glorot, Bengio, 2010) and He (Kaiming uniform) (He et al., 2015) derive the ini-

tialisations a function of the dimensionality. However, in either case, no initial

knowledge is present in the weights, rather, they just present a useful starting point

to start the gradient descent learning process. However, another strategy is where

the weights contain knowledge, derived from optimising the same model on a sep-

arate dataset. This is defined as “transfer learning”. In this section we will briefly

discuss four main techniques in transfer learning, namely, pre-training, fine-tuning,

domain adaptation and knowledge distillation 4.

Pre-training is the process of training a model on a dataset which is different to

the dataset used for the final model training. The previous training is generally car-

ried out on a dataset larger than the final dataset. The most common dataset in the

computer vision community is ImageNet (Deng et al., 2009), due to its large size.

Pre-training can have many positive benefits such as reducing training time, increas-

ing overall model performance and allowing for training on smaller datasets (Studer

4These terms are often ambiguous in literature, especially across fields e.g., statistics, computer
vision, natural language processing etc.. We adopt the definition of the terms commonly (but not
strictly) used in the computer vision community.
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et al., 2019). However, recent experiments to statistically verify the benefits of Im-

ageNet pre-training have resulted inconclusive results Kornblith et al. (2019); Huh

et al. (2016). Furthermore, He et al. (2019) show that for semantic segmentation on

the COCO (Lin et al., 2014) dataset, ImageNet pre-training does not provide any

performance benefits and that learning rate scheduling is the most important factor.

Whilst He et al. (2019) achieve equal performance with and without pre-training, it

is shown that pre-training increases convergence speed.

Fine-tuning Fine-tuning exploits the fact that early layers of a CNN learn more

generalisable features than later layers. This is because CNNs generally involve hi-

erarchical pooling and small convolution windows, therefore, early layers typically

have very small receptive fields (Simonyan, Zisserman, 2014). This restricts early

layers to find local features such as edges and blobs, which are often useful for a

very wide range of visual perception tasks. There are two typical approaches to fine-

tuning. The first freezes the early layers of the network to preserve the early, more

generalisable features. This is common when the final dataset is smaller in size,

therefore, preventing the model from over-fitting the features to the new smaller

dataset. The second allows all network weights to be retrained. This is common

when the new dataset is itself large, or the pre-training and final datasets are likely

to contain a large domain-gap.

Domain Adaptation is the most simple form of transfer learning, where no further

training is carried out on a final dataset. Instead, the initialised weights are directly

applied to the final datasets test data. The performance of domain adaptation is

therefore strongly correlated with the domain gap between the old and new datasets.

Knowledge distillation is a method for distilling knowledge from one model to an-

other. This does not involve weight initialising. As such, the two models can have

completely different architectures. A typical example of this is the student-teacher

framework. A teacher model is first trained on a task. The student network then

learns to predict the teacher networks output, effectively transferring knowledge be-

tween the two models (Wang, Yoon, 2021; Cho, Hariharan, 2019). This approach is

used in Chapter 5 where the loss network distils knowledge into the scene network.
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2.4 Label Efficient Approaches

2.4.1 Existing Labels

For many applications, deep learning aims to automate a task which has been his-

torically carried out by humans. A prime example of this is land classification and

national scale mapping. Worldwide, mapping agencies create detailed Geographical

Information System (GIS) datasets which contains georeferenced vectorised data of

features ranging from major land-types (city, water, forest etc.) to local points-of-

interest (statues, buildings, roads). When combined with georeferenced sensed data

such as: high-resolution satellite imagery, aerial imagery, and aerial LiDAR these

vectors can be used to train machine learning systems. Dollar et al. (2006) present

an example where Google Maps was used to train a Boosted Edge Learning algo-

rithm for binary road detection from satellite imagery. Despite having access to

a very large, labelled dataset, this was not fully exploited. Mnih, Hinton (2010)

address this by using very large vector-based road data to train a neural network

to solve the same task. A key issue of using vector lines for road segmentation is

that they only denote the centerline of the road, and not all the valid road pixels.

To address this issues a label map Li, j = {0,1} is computed as L= e−d(i, j)2

σ2 where

d(i, j) is the Euclidean distance of a pixel and the nearest road vector position and σ

is a smoothing component which is roughly corresponds to the width of a two-lane

road. L can therefore been seen as a probability map that the corresponding pixel

belongs to a vector road centerline.

Du et al. (2015) convert multi-class GIS vector maps directly into raster data

which are predicted from high-resolution satellite data. Li et al. (2019) utilised

multi-source GIS data (OpenStreet Map, Google Maps and Map world) to train a

modern U-Net (Ronneberger et al., 2015) deep learning-based semantic segmenta-

tion network.

Audebert et al. (2017) demonstrate that OpenStreetMap data can also be used

as an input for improving performance on existing datasets (i.e. (Mou, Zhu, 2016;

Debes et al., 2014)). Rasterised OpenStreetMap data can act as a strong prior for

pixels. The network can learn consistently correctly labelled pixels (i.e., centers of



2.4. Label Efficient Approaches 24

rooftops) very quickly and focus on refining incorrectly labelled pixels (i.e. building

footprint edge pixels).

Recently, Generative Adversarial Network (GAN) networks have also been

used to translate from aerial images to rasterised vector maps (Isola et al., 2017).

However, the goal of this work is to make perceptually coherent image-to-image

translations and were not evaluated on classification image metrics. The results

therefore whilst looking plausible have no guarantee of being accurate.

2.4.2 Synthetic Data

Researchers have a long history of exploiting synthetic data for generating training

data for training machine learning models. In this section we will look specifically

at the use of synthetic data for training 3D scene understanding models.

Creating realistic synthetic data typically requires two components: a virtual

world (geometry and material) and a sensor simulator. Wu et al. (2018) achieve this

by first exploiting the large world inside the video game Grand Theft Auto V. Un-

like previous examples of using Grand Theft Auto V for 2D semantic segmentation

(Richter et al., 2016; Johnson-Roberson et al., 2017), a virtual LiDAR scanner was

built inside the game. The LiDAR was set atop an in-game vehicle which was set

to drive around autonomously. Ray casting is used to simulate each ray of light,

whereby the position of the first hit surface is recorded along with object class,

center and bounding box. The system simulates the popular Velodyne HDL-64E

LiDAR. Distributions of noise were analysed from the KITTI dataset (Geiger et al.,

2013) and applied to the point clouds to further increase realism and reduce the

sim2real domain gap. Despite this, their model SqueezeSeg generalised very poorly

when switching to a real-world domain. This was accredited to dropout noise, de-

fined as missing points from the sensed point cloud caused by limited sensing range,

mirror diffusion of the sensing laser, or jitter in the incident angles. SqueezeSegV2

(Wu et al., 2019) proposed a domain adaption pipeline whereby dropout noise was

mitigated by a Context Aggregation Module, increasing real world test accuracy.

Virtual autonomous driving environments also serve as useful resources for

generating synthetic data for scene understanding. The Synthia dataset (Ros et al.,
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2016) is a vehicle drive through a virtual world. The dataset contains 2D imagery

but also a LiDAR inspired 2.5D registered depth map. As the primary purpose of

the research is to aid semantic segmentation for a moving vehicle, a full 3D point

cloud is not released with the dataset. The authors do demonstrate the added benefit

of pre-training on synthetic data. The more recent CARLA simulator (Dosovitskiy

et al., 2017) builds on Synthia but is released as a full simulator software with a fully

integrated API. Using CARLA Deschaud (2021) created a KITTI-like dataset. As

such, within the context of autonomous driving, many multiple systems have been

proposed for generating data (Hanke et al., 2017; Fang et al., 2020). Furthermore,

Fang et al. (2020) propose a hybrid system whereby real point clouds are augmented

with synthetic objects.

To aid the generation of virtual scanners, a popular approach is to combine the

scanner with standard 3D modelling software. For example, Gschwandtner et al.

(2011); Reitmann et al. (2021); Wang et al. (2019a) built multi-purpose and multi-

sensor LiDAR scanners inside the Blender (Community, 2018) open-source appli-

cation. Both plug-ins allow the user to virtually scan any arbitrary mesh-based

geometry built within blender. Reitmann et al. (2021) go further to also incorporate

weather simulation noise. Furthermore, material properties are read allowing for

RGB information and intensity to also be stored, along with any other useful prop-

erties such as object id, instance id and normals. A key issue with these systems

is that they are typically slow for larger scenes with complex geometry. Gusmão

et al. (2020) propose an approach parallelising the ray casting algorithm to improve

performance. Other simulator systems outside of blender include Bechtold, Höfle

(2016); Winiwarter et al. (2021).

2.4.3 Weak Supervision

The concept of label-efficient machine learning has attracted growing attention in

previous years. Whereas typical dense supervised learning requires a high-quality

supervision label for each predicted attribute (e.g. in image classification every im-

age would have a label corresponding to class of the image), this is not a requirement

for weakly supervised methods. Instead, noisy, limited, or imprecise supervision is
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used. Here we focus on the scenario where limited labels are used (e.g., image

classification where n images are used for training where m < n labels are avail-

able). This has a number of advantages. Firstly, as labels are typically manually

generated at the cost of human labour, the ability to train machine learning models

with less labels makes the model training process more cost effective. Secondly, in

many cases collecting a large quantity of labelled data is not possible. An example

of this is in medical data where some phenomena only occur at rare intervals. Fur-

thermore, this data is often burdened with strict privacy constraints. Lastly, some

tasks require highly trained professionals to acquire the labels (e.g., medical and

engineering applications). As there are often a shortage of such professionals, who

themselves have only finite time available, scaling data annotation can be in some

instances infeasible.

Specific to 3D data, there has been significantly less research in weakly super-

vised learning approaches, when compared to 2D images. As 2D labels are often

either available, or easier to obtain, a key form of weak supervision is to adapt

2D labels for 3D tasks. (Tang, Lee, 2019) combine 2D bounding boxes of new

class labels, along with transferring information from 3D bounding boxes of exist-

ing classes to train 3D object detectors on new classes. (Wilson et al., 2020) adapt

off-the-shelf 2D semantic instance segmentation networks to generate 3D detection

labels. This is achieved using high-definition maps and strong object size priors.

Their work also concludes that whilst their labels are noisy, the deep learning-based

architecture is robust to such inaccurate labels. (Wang et al., 2019b) show that 2D

semantic segmentation labels can be projected onto a 3D point cloud, again demon-

strating the networks robustness to noisy labels resulting from projection errors.

(Sanchez Castillo et al., 2021) take this idea further and show that off-the-shelf 2D

semantic segmentation predictions can be projected directly onto 3D point clouds

to achieve per-point classification. Whilst the results achieved were still subject to

noise, further refinement would be possible, for example with the use of Conditional

Random Fields (Wu et al., 2018). A key limitation of the above methods is that they

do not explicitly learn to model and account for noisy labels. (Genova et al., 2021)
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propose a method in which trusted labels are separated from not trusted labels. The

loss is only applied on trusted labels. Similar to (Sanchez Castillo et al., 2021) the

labels also come from an off-the-shelf 2D CNN network.

The above approaches all deal with exploiting lower-dimensional labels from

the 2D domain and adapting them to the 3D. In Chapter 5 we instead take a different

approach. Specifically, we look to exploit sparse manual 3D labels. Similar to our

approach, Meng et al. (2020) split their detection pipeline into two stages. By using

only, a single horizontal (x,y plane) manually annotated coordinate the first network

learns to generate cylindrical object proposals. The second stage learns to refine the

proposals into cuboids and confidence scores, using only a few labelled instances.

This allows for only a small fraction of scenes to be labelled, and furthermore,

within those scenes only a small fraction of instances to be fully annotated.

Concurrently to our work Hou et al. (2021) show that with contrastive pre-

training only 0.1% of available points are required to be labelled to perform per-

point and instance classification on the ScanNet dataset. Key to the paper was ad-

dressing limitation of PointContrast (Xie et al., 2020) whereby only point-level cor-

respondence matching is performed as a pretext task. The authors argue this disre-

gards spatial configurations and contexts in a scene. Instead, the scene is partitioned

into multiple regions and contrastive learning is applied to each region separately.

Through improved pre-training state-of-the-art results can be achieved with only 20

labelled points per a scene.

To reduce the manual labelling burden even further, Ren et al. (2021) introduce

a the WyPR pipeline which only requires a list of scene level tags (i.e., the objects

present in the scene). This is the first approach to remove the requirement of any

spatial labels for 3D point cloud detection. This is achieved with an elaborate series

of self and cross-task consistency losses and mulitple-instance learning objectives.

2.4.4 Analysis-by-Synthesis

An alternative approach to removing the requirement of labels is to adopt an

“Analysis-by-Synthesis” workflow. Broadly speaking analysis-by-synthesis aims

to analyse a signal by reproducing it using a model. That is given some function
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f or an input signal x and a model g, a successful analysis-by-synthesis requires

x ≈ g( f (x)). Specifically, in 2D / 3D computer vision this can have a number of

applications. Firstly, if f is a dimension reducing encoder and g a decoder a simple

cost function L can be defined as L = ||g( f (x))− x||22. This setup is known as an

Auto-Encoder and can be used for learning useful representations without labels or

as a lossy compression algorithm (Wang et al., 2016).

When dealing with images representing a world environment the decoder g

can be replaced with the use of a physically based renderer R. However, to enable

gradient-based learning, it is required that the renderer R be a Differentiable Ren-

derer Differentiable Renderer (DR) 5. In recent years there have been a number of

DR’s proposed (Liu et al., 2019; Loper, Black, 2014; Li et al., 2018a; Chen et al.,

2019). An in-depth review on the progress in this field is presented by Kato et al.

(2020). Assuming g is a DR, the problem is now constrained for the encoder f to

derive the configuration required for g such that it accurately reproduces the input

signal x. This enables a number of key applications such as predicting 3d objects

from a single image (Chen et al., 2019), estimating exterior and interior camera pa-

rameters (Li et al., 2018a), 6-DoF object detection and scene level object detection

(Beker et al., 2020).

In Chapter 5 we look at the scenario where f learns to predict the parameters

of objects in the scenes, along with their corresponding attributes. (Kundu et al.,

2018) exploit 2D object detectors to first locate objects in the 2D plane. Learnt

shape-priors from CAD databases are subsequently fitted to the regions minimising

a reconstruction loss. This procedure is carried out for each detected object in the

scene. The result of the optimisation is object orientation and shape. Zakharov

et al. (2020) follow a similar approach using continuous Signed Distance Function

(SDF) (Park et al., 2019a) priors along with normalised object coordinates (Wang

et al., 2019c) to fit the shape priors. To enable analysis-by-synthesis the SDF need

to be rendered. Subsequently, a novel SDF renderer is proposed. Unlike Kundu

et al. (2018), the authors also exploit sparse LiDAR. The SDF is then aligned to

5This is sometimes referred to as “render-and-compare” in some literature.
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the sparse LiDAR using a RANSAC algorithm. Beker et al. (2020) relax the sparse

LiDAR requirement using an off-the-shelf monocular depth estimation algorithm

(Guizilini et al., 2020). The method still relies on 2D instance segmentation masks

to locate 3D objects within the scene, similar to Zakharov et al. (2020). All these

methods demonstrate that with 2D instance labels (either detection or segmentation)

and a DR, the collection of 3D labels can be avoided.

An alternative use of analysis-by-synthesis is to in synthetic data generation.

By learning a generative model which can match a target distribution (i.e., the world

domain), it is possible to generate labelled data which can be used to train a detec-

tor. Mustikovela et al. (2021) achieve this with the use of a controllable GAN. The

generative model given specific input parameters such as the position and orienta-

tion of the target objects, synthesise realistic scenes respecting the input parameters.

If CAD data is available, Devaranjan et al. (2020) successfully employ a procedural

model which given a specific scene structure generates high quality labelled syn-

thetic data. Whilst these approaches are promising directions, their performance

depends heavily on the domain gap between the synthetic and real data. As such,

in scenarios where the target domain is very complex, these approaches may be

infeasible.

2.4.5 Self-supervision

Self-supervised pre-training of neural networks has experienced a lot of recent suc-

cess for 2D image tasks. State-of-the-art representation learning methods (Grill

et al., 2020; Goyal et al., 2021; Caron et al., 2020) have demonstrated an ability to

learn representations that are en-par with those learnt from fully-supervised meth-

ods. Despite such advances, only recently has 3D data achieved similar attention

with regards to self-supervised pre-training for deep neural networks. A key ben-

efit of self-supervised pre-training is that rich feature representations can be learnt

without any labels, allowing for task/domain specific training to be performed with

significantly less labelled data. Achieving similar performance in the 3D scene

understanding domain would therefore make a significant contribution to label effi-

cient learning.
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Perhaps the first paper to fully demonstrate the power of self-supervised pre-

training for 3D scene understanding is PointContrast (Xie et al., 2020). Whereas

previous self-supervised tasks in the 3D domain were previously restricted to single

object (Achlioptas et al., 2018; Yang et al., 2018) PointContrast operates on com-

plex scenes (ScanNet, S3DIS, SUN RGB-D etc.). A Fully Convolutional Geometric

Features network backbone Gθ (Choy et al., 2019) is used to learn both global and

local descriptors. As a pre-text task, a point cloud P is augmented into 2 views P1

and P2. The correspondence mapping M is then computed. Next, two tranforma-

tions T 1 and T 2 and sampled. Features f 1 and f 2 are then computed for P1 and P2

respectively. Finally, the loss is

L(Gθ (T 1(P1)),Gθ (T 2(P2))). (2.5)

Similar conclusions were are reached by Zhang et al. (2021c) who extended

3D pre-trained with pretext tasks to single-view depth scans without 3D registra-

tions and point correspondences. Their DepthContrast pipeline, again demonstrates

the benefits of not training 3D scene understanding networks from scratch. The

significance of PointContrast and DepthContrast imply that 3D pre-training will

become increasingly used within the 3D scene understanding community.

2.5 Datasets
As with other fields of machine learning, the availability to high quality datasets

is essential for algorithm development and comparison. We outline the most com-

monly used indoor and outdoor datasets in Tbl. 2.1 and Tbl. 2.2 respectively. In

general, most datasets focusing on 3D scene understanding can be categorised as

indoor hand-held scanners (e.g., RGB-D sensors such as the Microsoft Kinect or

Apple iPhone), static outdoor scans (e.g., with a TLS), mobile outdoor scans (e.g.

with a MLS) or autonomous driving datasets. Autonomous driving datasets are

unique in that they are always focused on road scenes and are generally captured

with a Velodyne scanner which is typically much more sparse and low quality than

a typical TLS or MLS. Whilst we do not present by any means an exhaustive list of
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available datasets, the datasets presented in Tbl. 2.1 and Tbl. 2.2 are the datasets

that are most commonly used as benchmarks in publications. More specifically,

ScanNet, Semantic3D and KITTI receive the largest popularity for indoor, outdoor

and autonomous driving datasets respectively.

Table 2.1: Commonly used indoor datasets for 3D scene understanding model training and
evaluation. We assign the following keys for tasks: D = Object detection, C =
Per-point classification and P = Object pose. Whereas each dataset do contain
additional tasks (e.g. trajectory estimation, 2D segmentation), we do not record
them here unless they are relevant to 3D scene understanding.

Dataset Sensor Task No. Scenes
ScanNet (Dai et al., 2017) RGB, Depth D, C 1500

S3DIS (Armeni et al., 2016) RGB-D D, C 6 (floors)
Apple ARKit (Baruch et al., 2021) iPhone, TLS D, C 5k
NYUDv2 (Silberman et al., 2012) RGB-D C 464

SUN3D (Xiao et al., 2013) RGB-D D, C, P 254
SUN RGB-D (Song et al., 2015) RGB-D D, C 63

Matterport3D (Chang et al., 2017) RGB-D D, C 90 (buildings)
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Table 2.2: Commonly used outdoor datasets for 3D scene understanding model training
and evaluation. We assign the following keys for tasks: D = Object detection,
C = Per-point classification and P = Object pose. Whereas each dataset does
contain additional tasks (e.g., trajectory estimation, 2D segmentation), we do
not record them here unless they are relevant to 3D scene understanding. Where
No. Points is preceded with ≈, the value is computed as the average number of
points per frame multiplied by the number of frames.

Dataset Sensor Task No. Points

Semantic3D (Hackel et al., 2017) TLS C 4B
Oakland (Xiong et al., 2011) MLS C 1.6M

Sydney Urban Objects (Quadros et al., 2012) Velodyne C 2.3M
Paris-rue-Madame (Serna et al., 2014) MLS C 20M

iQmulus/TerraMobilita (Vallet et al., 2015) MLS C 300M
TUM City Campus (Zhu et al., 2020) Velodyne C 1.7B

Paris-Lille-3D (Roynard et al., 2018b) Velodyne C 143M
KITTI (Geiger et al., 2013) RGB, Velodyne D, C, P ≈ 2.6M

Waymo (Sun et al., 2020) RGB, Velodyne D, C, P ≈ 203M
NuScenes (Caesar et al., 2020) RGB, Velodyne D, C, P ≈34M

A2D2 (Geyer et al., 2020) RGB, Velodyne D, C, P ≈1.2B
DublinCity (Zolanvari et al., 2019) ALS C ≈260M

H3D (Kölle et al., 2021) ALS + RGB1 C 73.9M

1Captured using Unmanned Aerial Vehicle and delivered as a photogrammetric point cloud and
mesh. The dataset is also provided in 3 epochs to accommodate change detection challenges.



Chapter 3

Reapplication of Existing Data as

Labels

3.1 Introduction
Reliable automatic building segmentation and mapping from LiDAR and has long

been sought for a range of applications. These include urban planning, disaster man-

agement, city modelling, national mapping, and population management. Despite

rapid technological advances, highly accurate solutions that function over large ar-

eas (i.e., entire countries) and land types (i.e., urban, rural etc.) remain unseen.

There are many reasons for this including the heterogeneous nature of both the ge-

ometry and spectral properties of buildings, unpredictable scene complexity and

the loss of relevant sensor data (i.e. occlusion (Awrangjeb et al., 2010)). Further-

more, with increasingly diverse architectural designs, deriving a general solution is

arguably becoming more complex. As a result of this, the research problem of de-

tecting buildings has been extensively studied over a number of years using a range

of sensing technologies such as; satellite imagery (Saeedi, Zwick, 2008), aerial im-

agery (Sirmacek, Unsalan, 2008) and Airborne Lidar Scanning (ALS) 1 (Vosselman,

2000; Kraus, Pfeifer, 2001; Akel et al., 2004).

A key ingredient for any supervised deep learning approach is training data.

Publicly available remote-sensing and GIS data exists in large quantities in many

1We refer to aerial LiDAR data as Airborne Lidar Scanning in this chapter.
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countries, with the data usually being made available by national mapping agen-

cies. The fine-grained quality of open national datasets is not usually high with

many errors often being present within the dataset. These errors tend to be caused

by missed features, over-generalisation, and in-accurately placed boundaries. Fur-

thermore, whilst best efforts can be made to match datasets, there will likely be

temporal discrepancies between aerial imagery, ALS and GIS vector data. Despite

this, data collection can be undertaken automatically and scales arbitrarily. The

largest limitation regarding open access GIS data is the in-ability to provide high

quality segmentation ground-truth data. However, such vector data does provide

a high-quality object detection dataset, as object detection is only concerned with

bounding box coordinates.

In this chapter we develop a pipeline for refining course public GIS for per-

point classification of ALS data. The result is per-point classification of ALS data

without the requirement for any additional labels, and instead using already col-

lected publicly available data. We achieve this through first proposing a novel

methodology for refining course GIS data with active contour snakes. Next 3D

point cloud data is projected to 2D raster maps where it is fused with aerial RGB

data. Finally, we exploit off-the-shelf semantic segmentation and object detection

networks to train our system.

3.2 Problem Statement

Given a point cloudP ∈R3 we want to assign a binary class k =N∈{0,1} denoting

whether point pi ∈P represents a point on the surface of a building. We achieve this

by first projectingP→I ∈Ri, j on the ground-plane such that i and j represent north

and east coordinates in a Cartesian coordinate system respectively. We therefore

look to find compute the mapping function f : I → N ∈ {0,1}.
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3.3 Methodology

3.3.1 Data Collection

Data collection was performed by an automated script which allowed for large data

volumes to be collected and processed in a reasonably short amount of time (≈

4 hours on a standard desktop computer). All data acquired was aerial informa-

tion over England, UK. RGB imagery with a ground sampling distance of 25cm is

first obtained from the Ordnance Survey (OS). Next, pre-computed Digital Surface

Model (DSM) maps from 50cm airborne lidar are obtained from the UK Environ-

ment Agency and re-sampled to 25cm. Finally, OS OpenMap local data is down-

loaded over the area. Building footprint shapefiles are extracted and converted to

raster format at 25cm resolution. This information is downloaded by 10km2 OS

Grid-Reference tiles. Any areas missing lidar data are removed. The data is then

merged into RGB-D images and label data respectively and cropped to 250m2 tiles.

As the OS tiles cover varying land topographies it was also necessary to normalise

the depth channel between 0-255 for each image tile. This ensured the model would

learn the contextual relationship of the building geometry in respect to its local area,

and the absolute height (above a datum) is not considered. As a result, a more con-

sistent channel input is realised, with building roofs typically having pixel values

between 150-255 depending on surrounding buildings and presence of high vegeta-

tion.

Whilst saving each label tile the bounding box coordinates for each building in-

stance were extracted and saved to .xml file in the Pascal VOC (Everingham et al.,

2010) dataset format. This was computed by running a binary image border ex-

traction algorithm (Suzuki, be, 1985) to obtain border locations and computing the

bounding area. Nine tiles were collected covering a wide diversity of land cover.

Tiles covering rural areas were susceptible to containing large areas where no build-

ings were present. This can cause an extreme foreground-background class imbal-

ance during training as large areas in rural tiles will contain no buildings, effectively

saturating the CNN with easy to detect negative examples. This has been shown to

cause issues in training and be responsible for decreasing accuracy in object detec-
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Table 3.1: UK data collected for model training and testing using a automated script. Tile
names correspond to OS area codes for which the images are geographically
located.

OS Tile No. Images No. Building Instances
TL50 1695 6110
SZ10 4060 38898
TF03 678 2604
TQ24 3450 19296
TQ39 7420 53422
TQ58 4987 42512
TQ67 2266 6993
Total 24556 169835

tors (Lin et al., 2017). To account for this, any tiles with no buildings (w.r.t OS

OpenMapLocal labels) is consequently deleted and not included in the model train-

ing/evaluation. The final dataset consisted of 24,556 images containing 169,835

instances of buildings (Tbl. 3.1).

We evaluate our model on the ISPRS Potsdam 2 semantic labelling benchmark

datasets. The Potsdam dataset contains similar RGB and lidar data to the data col-

lected via the methods above, however, are at a higher resolution (5cm and 9cm

respectively). The Potsdam dataset is not included within the main model training

dataset. Evaluation therefore measures the model’s ability to generalise. To quan-

tify this, we also fine-tune the OS data derived trained model with a sub-sample of

the Potsdam data separately and re-evaluate the model performance.

Once the data is stored in RGB-D images we further refine our image to RGB,

RG-DE and N channels. Where the depth channel ’D’ is the edge magnitude and

normalised DSM layers respectively.

3.3.2 Morphological Geodesic Active contours

The frequent use of Active Contour Models (ACM) has been consistent in computer

vision applications (i.e. shape recognition, object tracking and segmentation) since

its inception (Kass et al., 1988). The Geodesic Active Contours (GAC) (Caselles

et al., 1997) advanced on prior work by proposing a robust technique in which

ACM’s evolve in time according to intrinsic geometric measures of an image. In

2http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html
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general, a ACM can be defined as an energy-minimising two-dimensional spline

curve of points pi = (xi,yi) for i = 1,2, . . . ,n where xi and yi are the x and y coor-

dinates respectively and n is the number of points. To describe a classical energy

base snake (Kass et al., 1988), let C(q):[0,1]→ R2 be parameterised planar curve

and let I : [0,a]x[0,b]→ R+ be a given area with edges which we want to segment,

the energy of curve C is given by:

E(C) = α

∫ 1

0
|C′(q)2dq+β

∫ 1

0
|C′′(q)|2dq−λ

∫ 1

0
|∇I(C(q))|dq (3.1)

where α , β and λ are real positive constants. Here the first two terms are re-

sponsible for controlling the smoothness of the contours, and the third for attracting

the contour towards the edges in the image (external energy). Therefore, solving

the ACM problem amounts to finding, for a given set of constants α , β , and λ and

the curve C that minimises E.

GACs differ to classic parametric ACMs in their ability to naturally handle

changes in the topology of the curve, as well as not relying on the parameterisation

of the contour. In GACs the engery function is a geodesic in a Riemannian manifold

with a metric induced by image features (i.e., target borders). The GAC further

incorporates methods learned from euclidean curve shortening and level sets. The

energy minimisation is achieved by solving Partial Differential Equation (PDE) on

an embedding function that has the contour as its zero-level set. The PDE for GACs

is defined as:

δu
δ t

= g(I)|∇u|div(
∇u
|∇u|

)+g(I)|∇u|ν +∇g(I)∇u (3.2)

where g : [0,+∞[← R+]] is a strictly decreasing function such that g(r)← 0 as

r← ∞ and u and ν are signed distance functions. The first term is the smoothing

term, the second is the balloon term and the third is the image attachment term.

The GAC also employs the concept of a balloon force as first proposed by Cohen
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(1991). The balloon factor makes the curve behave more like a balloon being in-

flated by an additional force. This ensures the contour is not stopped on weak edges

as well as allowing the contour to hold a degree of integrity to its current shape. This

is particularly beneficial in our case as the lidar data used is not very high quality

(50cm). The coarseness of the data causes apparent gaps in strong edges caused by

partial hits of sharp geometric edges of buildings. The result is a strong edge with

intermittent low intensity pixels. The balloon factor therefore makes the contour

mostly invariant to these small gaps (Figure 3.1).

The most recent advancement in ACM’s is the proposal of a morphological

approach (Márquez-Neila et al., 2014) which can be used to enhance GAC’s as well

as Active contours with edges (Chan, Vese, 2001). Morphological ACMs work

similarly to classical ACM’s, however, instead of solving PDEs and level-sets over

a floating-point array, morphological operators (i.e., dilation and erosion) are used

over a binary array. The morphological ACM is therefore approximating the PDEs

solutions making the model faster and numerically more stable. In this paper we

use an implementation of a morphological approach on a GAC (MorphGAC). The

approach utilises the ability to express some morphological operator as PDEs. For

example, a dilation Dh and erosion Eh with radius h of function u can be defined as:

Dhu(x) = sup
y∈hB(0,1)

u(x+ y) (3.3)

Ehu(x) = inf
y∈hB(0,1)

u(x+ y) (3.4)

where B(0,1) is a ball of radius 1 centered at 0 and hB is the set B scaled by h

so that hB = {hx : x ∈ B}.

The dilation Dh can be used to show:

lim
h→0+

Dhu−u
h

= |∇u| (3.5)

Therefore, the successive application of Dh with very small radius,

limm→∞(Dt/m)
mu0, is equivalent to:
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δu
δ t

= |∇u| (3.6)

with initial value u(0,x) = u0(x). Thus, we can say the dilation has infinitesi-

mal behaviour equivalent to the PDE.

This can also be demonstrated for the erosion (Eh) function where:

lim
h→0+

Ehu−u
h

= |∇u|= δu
δ t

(3.7)

Whereas morphological active contours without edges works well without de-

fined boundaries, MorphGAC require a strong edge. This method is chosen here as

the sharp geometric shape of buildings on a DSM produce a pronounced edge of

gradient change. To further exemplify the edge, we take an approximation of the

differential of the DSM channel on the tile to be processed. This is achieved by

using the common sobel operator (Kanopoulos et al., 1988) in both horizontal (x)

and vertical (y) directions. This, in essence, gives us the gradient magnitude, there-

fore, sharp changes in elevation have strong responses and vice versa. This offers

the favourable conditions for our MorphGAC to grow given an optimum starting

(seed) point. To compute the seed point, the moments are computed for each Open-

Figure 3.1: A) Typical example of an ACM expanding towards a boundary. B) i) DSM
raster channel in image after normalisation between 0-255, ii) Edge magnitude
of DSM after data cleaning and pre-processing, iii) Individual building prior to
pre-processing, iv) Individual building post pre-processing.
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MapLocal building polygon and the centre point which lies within the polygon is

extracted. To clean the data, first a simple binary mask is applied with a threshold

value of 20. This removes any noise on top of the building roof. Finally, a Gaussian

blur is applied to the tile and a single closing morphological operator is run over the

image to limit the number of gaps within the building boundaries.

However, one of the largest issues with large-scale manually labelled building

footprints is over-generalisation over smaller buildings. To correct for this, before

the seed point is determined for the building footprint, a multiple building check is

performed. This is achieved by first masking the DSM with the footprint label. Next

a k-means where k = 5 is computed on the image histogram. A threshold value is

then located where k = 3 and any point with a pixel value x where x > (k = 3) is

defined as above ground. Individual buildings are then detected with the Douglas-

Peucker algorithm. The seed points are then computed for each individual building

using the contour moments.

Figure 3.2: Delineation of multiple buildings from over-generalised labels. An otsu bina-
risation threshold is utilised over each label to determine if the label has been
over-generalised. If this is the case multiple geomorphological snake seeds
points are extracted for the center of each individual building.
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3.3.3 Models

Broadly speaking, CNN-based object detectors fall into one of two categories: one-

stage and two-stage. The two-stage approach was popularised by (Girshick et al.,

2014) and, work by firstly generating a regional proposal for potential bounding box

locations, and secondly, classifying each region proposal candidate using a classi-

fication CNN (e.g. (He et al., 2016; Simonyan, Zisserman, 2014)). The one-stage

approach was popularised by Sermanet et al. (2013); Liu et al. (2016); Redmon

et al. (2016) and motivated by the potential to speed up the two-stage process which

has many speed limitations such as their inability to parallelise well. Instead, the

one-stage detector applies a dense sample of classifications over the image at var-

ious scales and aspect ratios. The classifications with the highest probabilities of

containing a given object are considered the objects bounding box. This computa-

tionally cheaper method has allowed for one-stage object detectors to be deployed

on consumer hardware (i.e., mobile phones) for real-time detection, however, usu-

ally achieve poorer accuracy than their two-stage counterparts. We consider two

model architectures, RetinaNet (Lin et al., 2017) (one-stage) and Faster R-CNN

(two-stage) for our object detection backbone.

For all processing scenarios we use pre-trained weights to initialise our net-

Figure 3.3: Workflow for improving building footprint labels.
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works. Firstly, ImageNet is used to pre-train the classification backbones of each

detection system. Next, the entire object detection system is pre-trained on the

Dataset for Object detection in Aerial images dataset (Xia et al., 2018), which con-

sisted of 2,806 aerial images with 188,282 manually labelled instances.

Initially, adaptations were made to both RetinaNet and Faster-RCNN to allow

for 4 channel inputs (RGB-Depth), however in both cases this substantially reduced

the networks performance. We therefore opted to solely train on 3 channel models.

This also enables existing architectures to be used much more easily without the

need for network alteration. The blue channel was removed as it strongly corre-

lated to both the red and green channels and therefore contains a large amount of

redundant information. This is further justified as over both urban and rural envi-

ronments in the UK blue is likely to be the least dominant and informative channel.

Although, the third (blue) channel weights had no relevance to depth, we found that

initialising the model with RGB pre-trained weights improved accuracy for RG-D

datasets. This is likely due to low-level features being generally concerned with lo-

cal maximas/minimas, blobs and edges which is relevant for the detection of sharp

geometric boundaries in the depth channel. We therefore find that the pre-trained

weights generalise to the depth channel for the higher layers of the network, which

are often accredited to requiring the largest amount of training data. Internal com-

parisons were made against models initialised with random weights for all channels.

Random weights were sampled around a truncated (He) normal distribution centred

on 0 with σ =
√

2
η

where η is the number of input units in the weights tensor (4 in

this instance) (He et al., 2015).

To achieve semantic segmentation of the RG-D image we evaluate two ap-

proaches. The first is an end-to-end pipeline Mask-RCNN which builds directly on

Faster R-CNN by adding a third output branch for each candidate object which pre-

dicts a binary maskMi, j ∈Ri, j = [0,1] indicating which pixels inside the bounding

box belong to the object.

As no such extension was readily available during our experiments, semantic

segmentation is performed using GAC as described in Sec. 3.3.2. The centers of
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the bounding boxes predicted by RetinaNet are used as seed points for the GAC to

produce the final maskM. Since, our experiments several semantic segmentation

pipelines using the focal loss from RetinaNet have been proposed which could en-

able an end-to-end semantic segmentation pipeline with RetinaNet (Yu et al., 2020;

Jaeger et al., 2020; Alon et al., 2019).

3.3.4 Model Evaluation

For segmentation scenarios the model performance is evaluated by computing the

precision, recall and F1 accuracy for each processing scenario. We define each

metric as:

Accuracy =
T P+T N

T P+FP+FN +T N
(3.8)

Precision =
T P

T P+FP
(3.9)

Recall =
T P

T P+FN
(3.10)

F1 = 2∗ Recall∗Precision
Recall+Precision

(3.11)

To evaluate the object detection accuracy of the models during training, we

calculate the mean Average Precision (mAP), where a positive is defined with

having an Intersection over Union (IoU) with the ground truth box > 0.5. The

mAP is computed as the average of the maximum precision at 11 recall vales

(r ∈ 0.0,0.1, . . . ,1.0). The mAP can therefore be defined as:

mAP =
1

11 ∑
r∈0.0,0.1,...,1.0

APr (3.12)
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3.4 Results

3.4.1 Mask R-CNN

Mask R-CNN networks are first trained using course unrefined public labels. The

process was repeated for RGB, RG-DE and RG-DN channel images (Tbl. 3.2). The

most prominent disparity exists between models that have been trained with a depth

channel. All scenarios perform well (> 90%) under the segmentation accuracy

metric, however, the F1 is a more representative metric for model performance. One

reason for this is that the test dataset contained an average of 15% building pixels.

The incorporation of depth data resulted in a 25% and 31% increase in F1 value for

RG-DE and RG-DN respectively. Precision values demonstrated little variability

relative to recall values. This suggests that the incorporation of depth data was

most prominent in resolving false negatives. Suggesting under-segmentation was a

key issue with inference when the depth data was not present. Improvements were

also seen in Faster R-CNN mAP scores, this demonstrates the Faster R-CNN object

detection branch also benefited from depth data inclusion.

An overall improvement is noticed with the replacement of public labels for

improved labels (Sec. 3.3.2) (Tbl. 3.2). In contrast to the inclusion of depth data,

improved labels had a greater impact on the precision value. This therefore suggests

the greatest progress was in the resolution of false positives. As one of the key issues

with public building footprints is over-generalisation and thus, over-segmentation,

this is unsurprising. The improvement of recall resulted in a 21%, 14% and 9%

increase against their public label counterparts for RGB, RG-DE and RG-DN re-

spectively.

The difference between RG-DE RG-DN is minimal, with mAP and F1 scores

being almost identical. However, we note training time was typically less for RG-

DN. Suggesting the network is capable of fitting to both depth channels, likely due

to the most significant information being located at the building edge where a sharp

change in altitude is represented by a strong edge.

The trained models then applied to the Potsdam benchmark dataset (Table 3.3).

The results observed on the Potsdam dataset are not generally consistent with the
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Table 3.2: Mask R-CNN segmentation results. mAP is calculated for recall > 0.5 with true
positives defined as IoU> 0.5.

Model mAP Precision Recall Accuracy (%) F1 Value
RGB OS labels 0.45 0.73 0.61 91.33 0.61

RG-DE OS labels 0.54 0.76 0.79 94.24 0.76
RG-DN OS labels 0.51 0.76 0.87 95.27 0.80

RGB labels+ 0.68 0.82 0.72 93.97 0.74
RG-DE labels+ 0.80 0.89 0.88 97.09 0.87
RG-DN labels+ 0.81 0.88 0.90 97.11 0.87

prior results on the main training dataset (Table 3.2). In public label scenarios the

most prominent statistic is the reduction of recall value. This is a result from an

increase in false negatives. As the reduction in recall is generally caused by under-

segmentation of a feature, this explains the steep increase precision values. Build-

ings in the Potsdam dataset on average covered 22% of the image. This explains

that whilst the accuracy values are respectfully high, the performance based on the

F1 metric is very poor. The RG-DN did improve the performance somewhat, how-

ever, poor recall values suggest the results are unreliable and unrepresentative of the

overall performance.

Models trained with the improved labels demonstrated a noticeable improve-

ment for training sets contained depth data. This most represented by the increase in

recall values by 130% and 25% for RG-DN and RG-DE respectively. The absence

of improvement in the RGB image sets suggests that the improved labels had the

largest impact on the depth channel in the network training. Despite Potsdam be-

ing noticeably different to the training dataset in terms of building architecture and

radiometric properties, the general model with the inclusion of depth performs as

well on the Potsdam dataset as the RGB model trained with improved labels on it’s

standard test set. The significance of this is two-fold. Not only does this show that

the model has learned what a building is on a general level, but also, exemplifies the

significance of incorporating geometric data into the network.

Lastly, the weights from their respective models trained using the improved

labels are used as pre-trained weights for fine-tuning on the Potsdam dataset. This

causes significant improvements to all performance measures, with F1 scores rang-
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Table 3.3: Potsdam Mask R-CNN segmentation results.

Model mAP Precision Recall Accuracy (%) F1 Value
RGB OSLabel Generic 0.30 0.80 0.44 81.16 0.53

RG-DE OSLabel Generic 0.34 0.88 0.30 77.42 0.41
RG-DN OSLabel Generic 0.36 0.84 0.55 89.98 0.66

RGB Label+ Generic 0.41 0.96 0.32 83.57 0.55
RG-DE Label+ Generic 0.48 0.79 0.69 86.98 0.73
RG-DN Label+ Generic 0.48 0.87 0.69 88.01 0.75

RGB Fine-Tune 0.71 0.91 0.91 95.30 0.91
RG-DE Fine-Tune 0.78 0.92 0.92 96.03 0.92
RG-DN Fine-Tune 0.79 0.93 0.93 96.09 0.93

ing from 0.91 to 0.93. In all instances precision and recall were equal suggesting

a stable model. Here the test dataset comprised of 20% of the total data. This

contrasts with the generic model tests as these could be tested against 100% of the

dataset. Due to the size and homogeneous nature of the Potsdam dataset it is not

possible to confidently confirm whether the model has simply over-fit to the data or

indeed the solution is more general.

3.4.2 RetinaNet

Experiments undertaken with the RetinaNet architecture followed similar patterns

to those observed with the Faster R-CNN architecture. However, the models trained

using RetinaNet appear to have performed to a higher standard w.r.t the evaluation

metrics on the main aerial dataset (Table 3.4). Models trained using public datasets

obtain substantially higher mAP scores, with RGB, RG-DE and RG-DN achieving

17%, 24% and 31% increases respectively over their Faster R-CNN counterparts.

Whilst the final per-pixel segmentation process differs between the two net-

work pipelines many similarities are observed. In line with Mask R-CNN, the pres-

ence of a depth channel offered little improvement to precision, however, strongly

influenced the recall values. Here, the recall values observed are 0.78, 0.89 and

0.92 for RGB, RG-DE and RG-DN respectively. This has resulted in a general

overall performance increase in F1 score. The improvement does however come at

a cost of computation time. Despite Morphological GACs performing substantially

faster than non-morphological GACs they are still comparatively slower than a typ-

ical CNN based inference. Whereas a single inference takes 0.5 seconds, a single
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image containing 10 buildings takes 30 seconds 3. By re-implementing the Mor-

phological GAC to process on the GPU computation times could likely be largely

decreased.

The use of the improved labels for model training, as with Mask R-CNN, had

a significant impact on performance during network training. This resulted in mAP

values to reach 0.83, 0.9 and 0.92 for RGB, RG-DE and RG-DN respectively. Sug-

gesting the model robustly detects buildings, with almost no buildings not being

identified on the test set inference. This resulted in improved recall values for all

scenarios. Such improvements suggest mostly false negatives have been resolved

indicating less building have been missed, as opposed to false building detection’s

being resolved. In contrast to Faster R-CNN, RetinaNet learns well when depth

information isn’t present as well as when it is. This is justified by the final RGB F1

value exceeding RG-DE and equalling RG-DN.

Table 3.4: RetinaNet segmentation results. mAP is calculated for recall > 0.5 with true
positives defined as IoU> 0.5.

Model mAP Precision Recall Accuracy (%) F1 Value
RGB OS labels 0.53 0.84 0.78 95.12 0.81

RG-DE OS labels 0.67 0.84 0.89 96.35 0.86
RG-DN OS labels 0.67 0.86 0.92 96.82 0.89

RGB labels+ 0.83 0.96 0.94 98.42 0.94
RG-DE labels+ 0.90 0.90 0.91 97.41 0.88
RG-DN labels+ 0.92 0.95 0.95 98.62 0.94

The increase performance in mAP over Faster R-CNN in the main building

dataset was also present with the Potsdam dataset. This strengthens the evidence

that the RetinaNet as an object detector had learned the characteristics of buildings

more effectively (Table 3.5). This further indicates the potential benefits of the fo-

cal loss algorithm, and its relevance in single-class detection systems. Despite the

advantages seen during object detection, over the Potsdam dataset the use of Mor-

phological GAC’s as an online segmentation method was not as effective as Mask

R-CNN. The most noticeable performance caveat is the recall scores for all scenar-

ios. Whilst the high precision values (0.91-0.95) can be strongly accredited to the
3On a single GPU for CNN inference and a standard Intel 8 core CPU with multi-thread parreli-

sation for Morphological GAC inference.
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accurate initial seed points derived from RetinaNet, the poor recall would be accred-

ited to the Morphological GAC segmentation. More specifically, it is observed that

the buildings are under-segmented. The Potsdam dataset contains a largely differ-

ent building architecture and layout design to the majority of buildings in the main

dataset. For example, much of the scene contains large continuously terraced build-

ings (Figure 3.4). As this classifies as a single building it is therefore segmented in

a single Morphological GAC minimisation. However, the terrace buildings contain

large depth variance across individual dwellings amongst the whole terrace. This

therefore terminates the segmentation leaving the remainder of the building classed

as background.

Figure 3.4: a) Aerial and DSM of Potsdam town design. Many of the buildings are con-
tinuous terrace houses, which can cause issues for a Morphological GAC seg-
mentation. b) Example of apparent DSM smearing. In the aerial image the tree
appears to be separated from the house, however, the DSM shows a definitive
overlap.

The online use of the Morphological GAC segmentation is also the reason for

little variance in F1 values across all the scenarios. Generally, the performance
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Table 3.5: Potsdam RetinaNet segmentation results. mAP is calculated for recall > 0.5
with true positives defined as IoU> 0.5.

Model mAP Precision Recall Accuracy (%) F1 Value
RGB OSLabel Generic 0.46 0.91 0.72 93.94 0.80

RG-DE OSLabel Generic 0.46 0.93 0.78 95.32 0.85
RG-DN OSLabel Generic 0.48 0.94 0.79 95.54 0.86

RGB Label+ Generic 0.50 0.93 0.75 92.91 0.83
RG-DE Label+ Generic 0.40 0.92 0.79 93.21 0.85
RG-DN Label+ Generic 0.48 0.93 0.78 94.87 0.85

RGB Fine-Tune 0.81 0.94 0.78 94.89 0.85
RG-DE Fine-Tune 0.80 0.95 0.81 95.67 0.87
RG-DN Fine-Tune 0.81 0.95 0.82 96.12 0.88

of the building detector was high enough for all scenarios for the segmentation to

be the main caveat. However, there was still a substantial performance increase in

mAP for the fine-tuned scenarios. The inclusion of depth data showed no significant

improvements. Unfortunately, as the dataset is significantly smaller than what is

recommended for training deep CNN’s, it is a possibility the network has strongly

over-fitted to the training data, and the lack of variance between the training and test

produces seemingly very good results.

3.5 Discussion
The results presented in this chapter demonstrate the advance of improved labels for

both object detection and segmentation. This was most evident for object detection,

where the was an average of 47% increase in mAP score against 11.36% F1 seg-

mentation score. It was observed that improving labels had the largest impact on the

precision values for segmentation. Despite the fact over-generalisation would affect

the mean depth channel value the greatest, the largest increases for both object de-

tection and segmentation were observed in the RGB scenarios. Furthermore, this

suggests that poor labelling overlapping incorrect textures (i.e., roof vs road/garden)

is potentially more detrimental to the networks performance than a constant mean

difference. This is not surprising as CNN’s are known to learn textures in many of

the intermediate layers. These results offer quantitative analysis of the hypothesis

that large-scale GIS data can be used to train networks, with sheer quantity coun-

teracting poor quality. We demonstrate here that valuable results can be obtained
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Figure 3.5: a) Aerial images of UK buildings to be segmented. b) Public GIS data labels
c) Improved labels using the active contours d) Mask R-CNN segmentation
results e) RetinaNet object detection + active contour segmentation results.

with low quality training data, however, it is essential to have high quality labels for

state-of-the-art results. Poor quality can be a consequence of a number of causes

such as: over-generalisation, data acquisition temporal variance, missing data etc.

however, when using depth data, the quality of aerial image orthorectification is

prominent. This was witnessed extensively across both datasets, where errors in

othorectification led to a small misalignment in the aerial image and depth data.

The Morphological GACs proved to be an effective tool for pixel-wise seg-

mentation of buildings from initial building footprints. However, the tool was not

as effective when continuous terrace buildings as seen in the Potsdam dataset, dom-

inate the local architecture. Despite this, we demonstrate here that rule-based al-

gorithms can still act as a valuable tool to aid the training of machine learning

models. Furthermore, Morphological GAC derived segmentation on the UK dataset
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was showing to achieve higher accuracy than the state-of-the-art Mask R-CNN for

segmentation, provided seed points were given. This was demonstrated by the suc-

cess of the RetinaNet segmentation compared to Mask R-CNN (0.82 and 0.92 F1

scores respectively). The results here demonstrate that whilst a fully end-to-end

deep learning approach would be more desirable due to increased robustness and

computation speed, in many specific applications a combination of bespoke rule-

based and deep learning approaches can yield the greatest performance.

The potential benefits of the inclusion of depth data in aerial object detection

and segmentation scenarios is also exemplified from our experiments. We demon-

strate that existing CNN architectures (RetinaNet and Faster/Mask R-CNN) can be

used without alteration, and therefore, bespoke networks to handle depth informa-

tion are not essential. This was most prominent in the large UK building datasets

where the the inclusion of depth data resulted an overall increased mAP for ob-

ject detection and improved recall values for Mask R-CNN segmentation. Despite

this the implications of the depth channel were not as clear when evaluating on the

Potsdam benchmark dataset. In all scenarios network inferences after fine-tuning

on the Potsdam dataset very high-performance results were achieved. It could be

assumed that the larger dataset is more indicative of the general model performance

and therefore this suggests the high results observed on the fine-tuned datasets are

caused by a form of over-fitting. The Potsdam benchmark, when tiled to a simi-

lar geographic size ( 250m2) to the UK dataset only consisted of 133 images of size

(600x600px). All network architectures had > 50 million parameters, and therefore,

it is unreasonable to conclude exactly what the model has learned, and how appli-

cable the models would be for applications in different datasets. This highlights an

issue where relatively small benchmark datasets are inferred with increasingly deep

neural network architectures. Furthermore, the network weights pre-trained on the

UK dataset also did not perform well on the Potsdam benchmark. This indicates

that even though a large dataset was used for training, the general features of UK

buildings were not enough to allow for reliable inference on substantially different

building/street designs. This is important as this demonstrates that features learned
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from the depth channel alone is not robust enough for a functional general model.

Instead, higher layer features which are associated with larger patches of the im-

age and therefore object context are required within the training dataset. Despite

this, the data acquisition methodology presented here is scalable and therefore in-

corporation of more diverse training data would be easily achieved and likely highly

beneficial.

The comparison between the two-stage Faster R-CNN and one-stage Reti-

naNet, concluded in favour of RetinaNet. This is quantified by an average increase

in mAP of 1.25 on the main UK building dataset and 0.078 overall. This equates

to a percentage increase of 20.13% and 17.79% respectively. An increase was ob-

served for all but one processing scenario when using RetinaNet. Moreover, this

performance increase comes at a computation speed gain with the average inference

speed amounting to 73ms and 89ms for RetinaNet and Faster R-CNN respectively.

Although this contradicts the classic speed/accuracy trade-off (Huang et al., 2017),

this instead demonstrates the potential benefits of the focal loss algorithm intro-

duced in RetinaNet. In the UK building dataset, the absolute pixel class imbalance

observed was 1-6.66 and 1-4.5 for the Potsdam dataset, for foreground (building)

and background respectively. This however becomes exemplified by classification

at multiple scales. Therefore, this suggests that for single-class or multi-class where

large class imbalances are still present the focal loss is of fundamental use for high

performing models. Such conclusions were also made in a previous study (Griffiths,

Boehm, 2018). Moreover, Lin et al. (2017) demonstrate that even in the COCO

benchmark dataset where class imbalances are not as prominent, the model offers

performance improvements. The results indicate that the Mask R-CNN could ben-

efit from the incorporation of a focal loss method into the object detection branch.

This would combine the high accuracy object detection of the RetinaNet with power

of semantic segmentation.



Chapter 4

Domain Adaptation from Synthetic

Data

4.1 Introduction

A fundamental requirement for supervised deep learning is large, labelled datasets.

For this reason, progress in 2D image processing is often largely accredited to the

wealth of very large, high quality datasets (Deng et al., 2009; Lin et al., 2014; Ev-

eringham et al., 2010). It is now common practice to pre-train 2D CNN’s on large

datasets before fine-tuning on smaller domain specific datasets. Despite the large

success of deep learning for 2D image processing, it is evident that automatic un-

derstanding of 3D point cloud data is not as mature. In this chapter we argue one of

the reasons for this is the lack of training data at a comparable scale of that available

for 2D data.

A key reason for the lack of 3D training data is that naturally the amount of pre-

pared labelled data decreases as the complexity of labelling increases (as discussed

in Sec. 1.4). For example, in 2D, single image classification is generally trivial and

can therefore be carried out by large communities of minimally trained workers.

Object detection requires more skill and has an added level of subjectivity. Seg-

mentation again requires further precision, delicacy and involves more subjectivity.

Per-point 3D segmentation requires highly skilled users and generating perfect la-

bels for even the most advanced users is non-trivial (Liu, Boehm, 2014). A potential
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solution to account for this is to synthetically generate training data (Chang et al.,

2015; Gschwandtner et al., 2011; Reitmann et al., 2021; Wang et al., 2019a). De-

spite wide-spread success observed in the 2D image domain, training with synthetic

data and fine-tuning on real-world data, there has been significantly less research on

this topic with respect to point cloud classification.

3D data benefits from a wealth of synthetic data in the form of virtual 3D envi-

ronments generated for the purpose of gaming, virtual reality and scenario training

simulators. However, the ability for deep learning networks to generalise from syn-

thetic point clouds to real-world data is infrequently studied, and as such the com-

munity risks missing out on a massive resource of data. To help address this, in this

chapter we introduce “SynthCity”, an open, large scale synthetic point cloud of a

typical urban/suburban environment. SynthCity is generated using a simulated Mo-

bile Laser Scanner (MLS). MLS point cloud data capturing is being increasingly

used due to its ability to easily cover large areas when compared to a Terrestrial

Laser Scanner (TLS) and at a higher resolution than that of Airborne Lidar Scan-

ning (ALS). However, whilst capturing large quantities of data is becoming more

accessible, the value of such large datasets is limited without the means to extract

useful structured information from otherwise unstructured data. As such, progress

in this field offers huge potential for a range of disciplines from city planning to

autonomous driving.

In this chapter we develop and evaluate a pipeline for generating 3D MLS

data using the open-source 3D modelling software Blender (Community, 2018)

and open-source LiDAR simulator Blensor (Gschwandtner et al., 2011). We show

that creating such a dataset requires few processing steps providing an existing 3D

model is available. We evaluate the use of our dataset for pre-training the popular

PointNet++ network (Qi et al., 2017b). Our experiments have two primary axes.

First, we evaluate the benefits of pre-training our network to train a small (Paris-

Lille-3D ∼143.1M points (Roynard et al., 2018a)) dataset. Secondly, we evaluate

the effect of adding varying scales of Gaussian noise to the synthetic point cloud to

reduce the Synthetic to Real (sim2real) domain gap.
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4.2 Problem Statement
We aim to generate a globally registered point cloud P ∈ Rn×3+k where n is the

number of points such that n = 367.9M and k is red, green, blue, time, end of line,

and class label c where c ∈ {1,2, . . . ,9}.

4.3 Methodology

4.3.1 Synthetic Point Cloud Generation

The SynthCity data was modelled inside the open-source Blender 3D graphics soft-

ware Community (2018). The initial model was downloaded from an online model

database (Fig. 4.1). To increase the overall model size, the model was duplicated

with the objects undergoing shuffling to ensure the two areas were not identical to

one another. Road segments were also duplicated to connect the two urban environ-

ments leaving large areas of unoccupied space. To populate these areas additional

typical suburban building models were downloaded and placed along the road. The

final model contains: 130 buildings, 196 cars, 21 natural ground planes, 12 ground

planes, 272 pole-like objects, 172 road objects, 1095 street furniture objects and

217 trees (table 4.3). The total disk size of the model was 16.9GB. The primary

restriction for the size of the dataset was availability of Random Access Memory

(RAM) required on the workstation used for creating the model. This was limited

to 32GB in our case, however, with a larger RAM the model size could have easily

been extended using the described technique for many more iterations.

The open-source Blender Sensor Simulation plugin Blensor (Gschwandtner

et al., 2011) was used for simulation of the MLS and thus point cloud generation.

We use the following configuration for scanning:

A typical scan took∼330s to render and a total of 75,000 key frames were ren-

dered from a pre-defined trajectory. To increase realism and generate more variabil-

ity in point density the trajectory spline was randomly perturbed at random intervals

in all x,y,z directions. The final rendering required (330×75000)/86400 = 286.46

days CPU compute time. This was processed using AWS cloud computing service.
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Figure 4.1: Rendered image from the initial downloaded model. Image source Squid
(2022).

Table 4.1: Blensor scanner configuration.

Attribute Value

Scan type Generic lidar
Max distance 100m
Angle resolution 0.05m
Start angle -180 °
End angle 180 °
Frame time 1/24s

We launched 22 type r4.2xlarge Ubuntu 18.04 EC2 spot instances, each contain-

ing 8 virtual CPUs and 61GB RAM. These were selected as rendering typically

required ∼50GB RAM. All data was read and written to a EFS file storage system

to allow for joint access of a single model instance. The total rendering time took

∼13 days on 22 EC2 instances.

Each render node produces an individual file st for the 2D scan at time frame

t. To create the global 3D point cloud each point must undergo a transformation T

with respect to the scanner location Sx,y,z and rotation Sω,φ ,κ . Blensor can export

both Sx,y,z and Sω,φ ,κ at time t as a motion file. Each scan is passed through a global

registration script where the transformation T is computed as the rotation matrix

where:
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Rx =


1 0 0

0 cosω −sinω

0 sinω cosω

 (4.1)

Ry =


cosφ 0 sinφ

0 1 0

−sinφ 0 cosφ

 (4.2)

Rz =


cosκ −sinκ 0

sinκ cosκ 0

0 0 1

 (4.3)

R = RzRyRx (4.4)

T =


R1,1 R1,2 R1,3 Sx

R2,1 R2,2 R2,3 Sy

R3,1 R3,2 R3,3 Sz

0 0 0 1

 (4.5)

Finally, each transformed point p̂t is computed as:

p̂t = pt ·T (4.6)

In a separate post-processing stage, we generate the featuresF = nx,ny,nz, time,eol.

To create F = nx, ny,nz we simply apply a 0.005m Gaussian noise to each dimen-

sion (x,y,z) of point p̂t independently such that p̂t = p̂x
t +σx, p̂y

t +σy, p̂z
t +σz where

−0.005 < σ < 0.005. We choose 0.005m as this is in line with an expected modern

scanner noise in a similar scenario. F = time is calculated by adding the key frame

time available in the motion file with the scanner point time available in the indi-

vidual scan files (i.e., 1Hz scan frequency). This is effectively a simulated Global

Navigation Satellite System (i.e., GPS) time available with MLS and ALS point

clouds. Finally, the end of line (eol) is calculated as a binary indicator where the
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peol
i = 1 if it is the final point acquired by the individual scan st or 0 otherwise.

Table 4.2: Data fields and stored types.

Feature Type

x float
y float
z float
xn float
yn float
zn float
R short
G short
B short

time double
eol boolean [0, 1]

label short [0-8]

We choose to store our data in the parquet data format (Apache, 2022). The

parquet format is very efficient with respect to memory storage but is also very

suitable for out-of-memory processing. The parquet format is designed to integrate

with the Apache Hadoop ecosystem. It can be directly read into python Pandas

dataframes but also python Dask data frames which allow for easy out-of-memory

processing directly in the python ecosystem.

The dataset is modelled from a completely fictional typical urban environment.

The environment would be most similar to that of downtown and suburban New

York City, USA. This was due to the initial base model, and not any design choices

made by ourselves. Other buildings and street infrastructure are typical of mainland

Europe. We classify each point into one category from: road, pavement, ground,

natural ground, tree, building, pole-like, street furniture or car. To address the class

imbalance issue, during construction of the model we aimed to bias the placement

of small less dominant features in an attempt to reduce this as much as possible. As

point cloud Neural Network (NN)’s’ typically consume spatially small (local) sub-

sets of the dataset we argue that this approach should not introduce any unfavourable

bias, but instead help physically reduce the class imbalance.

The final feature list with their respective storage type is shown in table 4.2.
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Table 4.3: Label categories and number of points per category.

Label No. Models No. Points

Road 172 215,870,472
Pavement 172 21,986,017
Ground 12 6,206,312

Natural ground 21 4,788,775
Tree 217 12,088,077

Building 130 97,973,820
Pole-like 272 1,636,443

Street furniture 1095 1,469,766
Car 196 5,907,347

Total 2287 367,927,029

The total number of points generated is shown in table 4.3. The disk space of the

complete parquet file is 27.5GB, as a typical workstation would not be able to load

this model into memory, we split this scan into 9 sub areas. Each sub area is split

solely on horizontal coordinates and can therefore contain points from any scan at

any key frame. The purpose of this is twofold; firstly, users of typical workstations

can load an area directly into memory, and secondly, we can nominate a fixed test

area. We propose that areas 1-2 and 4-9 be used for training and area 3 be reserved

for model testing. This enables consistency if models trained on our dataset are to be

compared from one another. We choose area 3 as it contains a good representation

of all classes. As SynthCity is not intended as a benchmark dataset we provide the

ground truth labels for area 3 in the same manner as all other areas. We show an

example output of the point cloud generation in Fig. 4.3.

4.3.2 Experiments

To evaluate the potential benefit of the SynthCity dataset, a series of experiments

are described and conducted. The experiments cover domain adaptation, fine-tuning

and a fully supervised baseline.

Domain Adaptation is the process of training a model in one domain (source do-

main) and deploying it on data from a different domain (target domain). Here,

the source domain is the SynthCity dataset (synthetic) and the target domain is the

iQmulus Paris-Lille dataset (real). A common additional technique to reduce the
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Figure 4.2: Total point counts for each label category. Note the log y-axis scale.

(a) RGB coloured point cloud. (b) Semantically labelled point cloud

Figure 4.3: Example scene from the SynthCity dataset.

domain-gap from the source to target domain is to apply some form of augmenta-

tion to make the source domain data “appear” more like the target domain data. In

this work we achieve these through two methods: synthetic sensor geometry and

noise.

One simple way to create a point cloud from a mesh model would be to simply

sample points randomly on the mesh surface. This point cloud would not contain

many of the artefacts expected in a real world MLS point cloud. Artefacts include

areas with no points due to occlusion, variable point density and local point patterns.

As such, a model trained on a sampled mesh point cloud would unlikely be robust

to any of these sensor specific artefacts. To account for this, we use a programme

(Blensor) which physically simulates MLS sensor geometry. Points are generated
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by shooting rays from a virtual sensor center in a circular sequence. Each stores the

x,y,z and object attributes of the first surface it hits. As such, occlusion is correctly

modelled. Shooting ray at 2D angles (θ , φ ) from a virtual scanner center further

results in varying point densities and scanner point patterns on surfaces.

Additionally, we also add Gaussian noise to the synthetic scans. We choose

noise as this is the most noticeable artefact present in real-world data that is not

present in the synthetic scenes. For each point p ∈ P we add noise by sam-

pling an offset vector x̂ ∼ N (µ,σ) where x̂ ∈ R3. Our final point cloud is there-

for pi + p̂ ∼ N (µ,σ)∀p ∈ P . In our experiments we study the effects of incre-

mentally increasing the σ of the normal distribution N (µ,σ) where µ = 0 and

σ = {0.01,0.05,0.1}. Scanner noise has two common sources. Firstly, angular

measurement errors result in incorrect point positions on the 2D scanner plane. The

magnitude of position errors from angular errors are therefore also a function of

distance. Secondly, timing errors occur from the scanner computing the time it

takes for a ray to return incorrectly. The position error is therefore along the ray

of light direction (1D). Although both errors could be simulated independently, the

timing error is expected to be at least an order of magnitude less than the angular

error (Vosselman, Maas, 2010). As such, we find a simple Gaussian in the order of

magnitude expected from the angular error to be sufficient.

Fine-tuning is a process of initialising a model state with the weights obtained by

training the same model on a different dataset. It is commonly observed that a

model can be fine-tuned with significantly less data when compared to training a

model from a random initialisation, provided the original dataset and task are not

too dissimilar from the new dataset and task. In these experiments we “pre-train”

the network on the SynthCity dataset. The model is then “fine-tuned” on the iQ-

mulus dataset. Note, this ability to retrain the weights on the iQmulus dataset is

what differentiates fine-tuning and domain adaptation here. Furthermore, as we do

not expect the synthetic domain to be close enough to the target domain of the real-

world data, we do not freeze early layers of the network as is often common practise

in fine-tuning scenarios where the domains are sufficiently similar, or networks suf-
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ficiently large. Our network is pre-trained on the SynthCity dataset (367M points)

and fine-tune the same network on a smaller iQmulus dataset (118M points).

Fully-supervised Lastly, to allow for relative comparison we also train the iQmulus

data using a standard fully-supervised learning approach. This acts as a baseline for

the domain adaptation and fine-tuning experiments.

Network setup We choose PointNet++ (Qi et al., 2017b) as the neural network.

PointNet++ was chosen as it has become a standard in 3D point cloud deep learning

and consistently performed at a high standard across a range of tasks, including

per-point classification. The training configuration as outlined in Tbl. 4.4

Table 4.4: Hyperparameter values for PointNet++ experiments.

Hyperparameter Value

Optimiser adam
Learning rate 1e-4
Number of down layers 4
Layer feature radius [0.2, 0.4, 0.8, 1.6]
Dropout rate 0.5

Pre-processing We pre-process all scenes with the same set of pre-processing steps.

Each scene is first cropped into 5m × 5m crops in the x,y plane (horizontal). To

ensure permutation invaririance the ordering of the points is randomly shuffled be-

fore being input to the network. Lastly, Gaussian noise is added to the points in

accordance with the Domain adaptation paragraph. As the classes between the

SynthCity and iQmulus datasets do not map one-to-one the iQmulus dataset classes

are remapped to best match the SynthCity classes. The class remapping is shown in

Fig. 4.4.

4.4 Results

All experiments are run according to the methodology discussed in Section 4.3.2.

The results are presented in Tbl 4.5 and Tbl 4.6.
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Figure 4.4: Class remapping between iQmulus and SynthCity datasets.

4.4.1 SynthCity

Experimentally we find there is a negative correlation between the magnitude of

Gaussian noise and overall performance with respect to the metrics. This is not

unsurprising for a synthetic dataset. When no sensor noise is present the network

can take advantage of strong consistencies and regularities in the data. For example,

all ground points lay on a perfectly planar surface at a fixed height in world coor-

dinates. Such regularities could be more easily learnt by the network. As they are

also present in the test dataset, over-fitting to these regularities on the training set

would also result in high test set performance.

4.4.2 iQmulus

In Tbl. 4.6 we present the baseline fully-supervised experiment. We apply a small

amount of Gaussian noise (σ = 0.01) as an augmentation to avoid over-fitting, as

is typical for per-point classification on point cloud data (Qi et al., 2017b, 2019;

Hermosilla et al., 2019; Thomas et al., 2019).
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Table 4.5: Experimental results for SynthCity dataset pre-training with varying magnitudes
of Gaussian noise.

Dataset σσσ Acc. Pr. Re. F1 mIoU
SynthCity 0.00 0.938 0.736 0.701 0.703 0.663
SynthCity 0.01 0.894 0.673 0.627 0.630 0.564
SynthCity 0.05 0.841 0.583 0.514 0.522 0.512
SynthCity 0.10 0.818 0.469 0.406 0.413 0.403

Figure 4.5: Birds eye view qualitative results on the iQmulus dataset for top) fully-
supervised, middle) fine-tuning and bottom) domain adaptation.

In Tbl. 4.7 we present the results from the domain adaptation experiments. The

inclusion of Gaussian noise, whilst reducing test performance on synthetic data, had

a positive correlation with performance on the iQmulus dataset up until 0.05cm.

After this, the performance degrades (with the exception of precision). Despite the

performance increasing, it is still significantly lower performing when compared

to the synthetic test set. This is a measurement of the domain-gap between the

synthetic (source domain) and real (target domain) data. Therefore, whilst Gaussian

noise can reduce the domain-gap somewhat, there is certainly a lot of room for

improvement in eliminating the domain gap.
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Figure 4.6: Perspective view qualitative results on the iQmulus dataset for left) fully-
supervised, middle) fine-tuning and right) domain adaptation.

Table 4.6: Experimental results for iQmulus Paris-Lille using standard fully-supervised
learning.

Dataset Pre- Fine-
σσσ Acc. Pr. Re. F1. mIoU.train tune

iQmulus 7 7 0.01 0.955 0.702 0.667 0.670 0.507

Fine-tuning (Tbl. 4.8) on top of the SynthCity pre-trained model (σ = 0.00)

had an improvement over the random weight initialisation (Tbl. 4.6). The addi-

tion of Gaussian noise in the SynthCity model training, whilst improving domain

adaptation performance (Tbl. 4.7), had the opposite effect for fine-tuning. One

explanation for this is that the network is learning weights specific to modelling

the Gaussian noise, which does not directly apply to the real data. It is therefore

unlikely the Gaussian noise reduced over-fitting on the synthetic data.

When looking at per-class IoU for synthetic data (Tbl. 4.9) the decrease of

performance is seen across all classes. The highest performing classes were car

and road. Interestingly, building was not one of the top classes. As discussed

above, road and building are generally have the highest point count and are easily

classified due to their planar nature. However, due to the coarse geometry of the

SythCity dataset and many gaps in the buildings, there was a lot of noise for building

points (see Fig. 4.7). Further evidence is given when looking at per-class IoU for

real data (Tbl. 4.10). The building class achieves the highest IoU score by a strong

margin over all other classes.

When looking at the overall per-class performance of the real data (Tbl. 4.10)

there does not appear to be any trends with respect to fine-tuning and domain adap-

tation at a class level. The addition of Guassian noise has a varying effect of each
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Table 4.7: Experimental results for direct domain adaptation (sim2real) from SynthCity to
the iQmulus Paris-Lille dataset.

Dataset Pre- Fine-
σσσ Acc. Pr. Re. F1. mIoU.train tune

iQmulus 3 7 0.00 0.643 0.422 0.323 0.332 0.200
iQmulus 3 7 0.01 0.690 0.451 0.358 0.366 0.229
iQmulus 3 7 0.05 0.744 0.451 0.370 0.380 0.244
iQmulus 3 7 0.10 0.675 0.437 0.341 0.350 0.215

Table 4.8: Experimental results for iQmulus Paris-Lille dataset through Fine-Tuning (FT)
with with different SynthCity Pre-Trained (PT) model initialisation.

Dataset Pre- Fine-
σσσ Acc. Pr. Re. F1. mIoU.train tune

iQmulus 3 3 0.00 0.957 0.723 0.693 0.695 0.501
iQmulus 3 3 0.01 0.953 0.700 0.674 0.676 0.504
iQmulus 3 3 0.05 0.943 0.701 0.668 0.672 0.477
iQmulus 3 3 0.10 0.920 0.642 0.597 0.602 0.410

class with, for example, ground decreasing in IoU and vegetation increasing.

However, relatively across classes performance does not change significantly.

4.5 Discussion

The results presented in Sec. 4.4 show the highest performing model on real data

with respect to accuracy, precision and recall was achieved through fine-tuning with

no added Gaussian noise to the SynthCity dataset. The highest mIoU score was

achieved with the fully supervised approach. The overall performance improvement

from the fully supervised baseline is very low across all metrics, and this could

easily be within the expected variance of the model training as a result of random

initialisations and the stochastic training procedure. As such, the improvement is

not significant enough to draw any solid conclusions. Furthermore, the addition of

Gaussian noise, whilst improving domain adaptation performance, still left a large

domain gap and had a negative impact on fine-tuning. There are several problematic

areas which might explain why this is the case.
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Table 4.9: IoU per class for SynthCity pre-training for classes; Building (B), Car (C), Nat-
ural Ground (N), Pole-like (Po), Road (R), Street Furniture (S), Tree (T) and
Pavement (Pa).

σ B C N G Po R S T Pa

σ0.00 0.645 0.941 0.163 0.543 0.610 0.882 0.560 0.683 0.597
σ0.01 0.684 0.863 0.124 0.491 0.533 0.774 0.476 0.368 0.546
σ0.05 0.630 0.839 0.103 0.382 0.538 0.635 0.463 0.454 0.350
σ0.10 0.550 0.733 0.055 0.338 0.331 0.582 0.388 0.305 0.258

Figure 4.7: Building class noise for SynthCity synthetic (left) and iQmulus real (right)
data. Note the difference in noise patterns.

Size Firstly, the SynthCity dataset may not be large enough. A key advantage of

synthetic data is the ability to scale up huge datasets which would otherwise not be

possible, and labelling is too expensive. Despite this, due to limited computational

resources, the size of SynthCity falls in-line with many other real datasets (see Tbl.

2.2). Increasing the number of points by orders of magnitude may contradict the

results found in this chapter. The key computational bottleneck for SynthCity was

having to load the entire scene in Blender which requires large amount for RAM.

A more dynamic RAM allocation environment such as (Dosovitskiy et al., 2017)

could avoid this issue and result in significantly large datasets with the same com-

putational resources.
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Table 4.10: IoU per class for fully-Supervised (S) (Tbl. 4.6) and Fine-tuning (FT) (Tbl.
4.8) and Domain Adaptation (DA) (Tbl. 4.7).

Exp. Building Car Ground Pole-like Street F. Veg.

S 0.838 0.329 0.646 0.302 0.266 0.660

FT: σ0.00 0.843 0.297 0.663 0.264 0.304 0.635
FT: σ0.01 0.852 0.319 0.652 0.310 0.271 0.617
FT: σ0.05 0.833 0.314 0.597 0.217 0.233 0.670
FT: σ0.10 0.806 0.206 0.597 0.188 0.203 0.462

DT: σ0.00 0.625 0.141 0.265 0.091 0.075 0.004
DT: σ0.01 0.669 0.146 0.333 0.098 0.122 0.004
DT: σ0.05 0.688 0.155 0.387 0.108 0.114 0.014
DT: σ0.10 0.636 0.145 0.310 0.102 0.088 0.008

Realism Although SynthCity looks visually realistic, geometrically it is a simple

dataset. This is because it was not originally created for the task of pre-training

3D scene understanding networks. In computer graphics, simple geometry can be

made to looks highly realistic with appropriate material and texture properties and

a well configured ray-sampling engine. A key drawback to increasing geometric

realism would be the additional memory requirement and more vertices and faces

would be required to represent the geometry. This would also increase the time

it takes to generate the dataset. Furthermore, the fundamental difference of the

geometry between synthetic and real leads to very different noise in the data. A

network should learn to be robust to specific types of noise present in the scene

(e.g., reflection and refraction from windows). Without also have realistic material

properties in the blender scene it is not possible for the pre-trained network to learn

such noise sources.

Real test set The test set of iQmulus is potentially too similar to its respective train

set (Fig. 4.8). The key benefit for synthetic pre-training is to increase generalisation.

However, if the train and test set are too similar, the test set performance will not

be measuring generalisation. Instead, it will be measuring the networks ability to

over-fit to the specific geographical area, sensor noise etc. More conclusive results

could therefore be possible on a dataset where generalisation is a clear problem with

train-test performance.
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Figure 4.8: Visualisation of a section of the iQmulus train dataset (top) and the validation
dataset (bottom).

Model In this chapter we use the PointNet++ (Qi et al., 2017b) network architecture.

Results from a similar experiment by Spiegel et al. (2022), instead with the more

modern KPConv model (Thomas et al., 2019), arrive at a contrasting set conclu-

sions. Whilst, the study agrees with our domain adaptation experiment, concluding

adding Gaussian noise with σ > 0.05 degrades results, the authors also note an im-

provement on performance in the fine-tuning setting. Unfortunately, the authors do

not provide baseline experiments allowing conclusion if fine-tuning is more benefi-

cial than fully supervised training as experienced in our experiments.

Class-imbalance Despite efforts being made to reduce the class-imbalance, a very

strong class imbalance still remained (see Fig. 4.2). This is a very common problem

with MLS where the sensor is typically located on the road in an urban environment.

As such > 90% of points are typically either ground or façade. This is further caused

by MLS data density being negatively correlated with distance from the scanner. As

such, the highest point density is always on the road. Although techniques such as

voxel down-sampling can be used as well as class aware augmentation techniques

(Griffiths, Boehm, 2019), this problem can persist. An alternative strategy is to
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employ a weighted focal loss (Lin et al., 2017), which has shown to be successful

for 2D image object detection (see. Sec. 3). It is evident from the results in Tbl.

4.10 that class over-fitting is occurring. Interestingly, for domain adaptation there is

almost no reduction in performance on the building class, however, car drops by

upto 80%. A potential reason for this is that the network learns heavily to rely on

absolute z (height) values of the points for classification. This is a reliable feature

as SynthCity is completely flat. A small change of scale between the scenes could

lead the network to make errors, especially on smaller classes like car. However,

for larger classes like building, which are the largest features in the scene, this

may not be such an issue.

4.6 Conclusion
In this chapter we presented SynthCity an open, large-scale synthetic point cloud.

The dataset has been made available for public release to help aid research in the

potential use for pre-training of segmentation/classification models on synthetic

datasets. SynthCity has been downloaded ∼ 5500 times1. Our experiments show

that the addition of Gaussian noise can increase domain adaptation performance

when evaluating a network pre-trained on a synthetic dataset and tested on a real

dataset. However, the incorporation of Gaussian noise has a negative correlation

when fine-tuning a real dataset from a synthetic dataset. This could be due to a

number of factors such as synthetic dataset size and realism or the real test set train-

test variability. We find the experiments carried out in this chapter to be a useful

starting point for future experiments which will be more conclusive in their findings.

1Since its release on 11.09.2019. Download count checked on 15.05.2022.



Chapter 5

Learning the Loss Function for Weak

Supervision

5.1 Introduction

Deep learning-based 3D object detection systems require very large manually la-

belled datasets to achieve competitive performance. Labelling in 3D is, however,

a challenging task. As such, most works benchmark their algorithms on a small

handful of datasets (e.g., KITTI (Geiger et al., 2013), ScanNet (Dai et al., 2017),

S3DIS (Armeni et al., 2016)). Whilst these datasets are a valuable resource for com-

paring different approaches, they are still relatively small when compared to avail-

able datasets in the 2D domain. Furthermore, they are generally domain specific

to the sensor and environment in which they are captured. Despite this, unlabelled

data can be captured with increasing ease. Considering modern laser scanners can

capture millions of points every second, and the incorporation of low-cost active

sensors on smart phones, capturing very high quantities of 3D data is extremely ac-

cessible. The prospect of being able to learn on unlabelled 3D data, therefore, has

become very attractive.

In this chapter we propose a novel weakly supervised learning approach which

can be trained on unlabelled data from a similar domain. Our key idea is to first

teach a loss network to solve a much simpler local problem using a small labelled

dataset. Specifically, given a small snippet of a labelled object with a random offset,
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learn to point towards the center of the object. Learning this simple task has a

powerful use case. The vector from a given position in world-space to an objects

center is the same as the gradient for a L2-based supervised cost function (e.g.,

Mean Squared Error / Chamfer Distance) for a 3D object detector prediction. This

network can therefore be used as a cost function for a scene network which predicts

objects positions from global scenes. The advantage to our approach is that the

scene network does not require any labels as all the supervision is restricted to the

loss network. The has two primary implications. Firstly, we can learn on unlimited

amount of unlabelled 3D data, providing it is within a similar domain to the data

used to train the loss network. Secondly, as the loss network is a very local task, it

can be trained on significantly less training data as it is not required to learn context

or global scene attributes. We show that using only 5% of the available labelled

data to train the loss network can achieve competitive performance on challenging

benchmarks. Finally, we show that the loss network has good generalisation, and

can be used to effectively guide a scene network on novel datasets for which no

labels were ever accessed.

5.2 Problem Statement
We aim to solve the task of 3D object detection from a geometric point cloud

P ∈ R3. A scene is parameterised as a set on n-objects o which are themselves

parameterised as o ∈ R f where f is the x, y, z object center, height, width, depth

object extent and i, j rotation around the up-axis (z) and confidence c = (0,1). Our

scene network mapping is therefore P → o ∈ Rn×9.

5.3 Methodology
We learn two networks: a scene network and a loss network (Fig. 5.1). The first

(Fig. 5.1, bottom) is deployed, while the second (Fig. 5.1, top) is only used in

training.

The scene network maps 3D scenes to sets of 3D object centers. The input data

is a 3D point cloud. The output is a fixed sized list of 3D object centers. We assume

a feed-forward approach, that does not consider any proposals Hou et al. (2019);
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Figure 5.1: Our approach proceeds in two steps of training (row) with different training
data (column one and two), networks (column three), outputs (column four),
gradients (column five) and supervision (column six). Object level training
(first row) data comprises of 3D scene patches with known objects that are not
centered. The loss network maps off-center scenes to their center (big black
arrow). Its learning follows the gradient of a quadratic potential (orange field)
that has the minimum at the offset that would center the object. This offset
is the object-level supervision, as seen in the last column. The scene network
(second row) is trained to map a scene to all object centers, here for three
chairs. The gradient to train the scene network is computed by running the loss
network from the previous step once for each object (here three times: blue,
pink, green). Note, that there is no scene-level supervision (cross).

Newell et al. (2016); Song, Xiao (2014, 2016) or voting Qi et al. (2019, 2020), but

directly regresses centers from input data Zhou et al. (2019a); Yang et al. (2019).

The loss network emulates the loss used to train the scene network. The input

data is again a 3D point cloud, but this time of a single object, displaced by a random

amount and subject to some other distortions. Output is not the scalar loss, but the

gradient of a Mean Squared Error loss function.

In the following, we will first describe the training (Sec. 5.3.1) before looking

into the details of both the scene and loss network implementation (Sec. 5.3.2).

5.3.1 Training

The key contribution of our approach is a new way of training. We will first look

into a classic baseline with scene-level supervision, then introduce a hypothetical

oracle that solves almost the same problem and finally show how this problem can

be solved without scene-level supervision by our approach.
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Figure 5.2: a) A 2D scene with three chair objects, supervised by centers (orange) and
their predictions (blue). b) The same scene, with the vector field of the oracle
∇ shown as arrows. c) A 2D Slice through a 6D cost function. d) A 2D Slice
through an alternative cost function, truncated at the Voronoi cell edges. The
oracle is the gradient of this. e) The simple task of the loss network: given a
chair not in the center (top), regress an offset such that it becomes centered.

Figure 5.3: Chamfer loss.

5.3.1.1 Supervised

Consider learning the parameters θ of a scene network Sθ which regresses object

centers Sθ (xi) = ĉ from a scene xi. The scene is labelled by a set of 3D object

centers ci (Fig. 5.2, a). This is achieved by minimising the expectation

argmin
θ

Ei[H(Sθ (xi)− ci)], (5.1)

using a two-sided Chamfer loss between the label point set ci and a prediction ĉi

H(ĉ,c) = Ei[min
j
||ĉi− c j||22]+Ei[min

j
||ci− ĉ j||22]. (5.2)

Under H, the network is free to report centers in any order, and ensures all

network predictions are close to a supervised center (precision) and all supervised

centers are close to at least one network prediction (recall) (Fig. 5.3).

In this work, we assume the box center supervision ci to not be accessible.

Tackling this, we will first introduce an oracle solving a similar problem.
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5.3.1.2 Oracle

Consider, instead of supervision, an oracle function ∇(x) which returns for a 3D

scene p the smallest offset by which we need to move the scene so that the world

center falls onto an object center (Fig. 5.2, b). Then, learning means to

argmin
θ

Ei, j[||∇(xi	Sθ (xi) j︸ ︷︷ ︸
yθ ,i, j

)||22], (5.3)

where x	 d denotes shifting a scene x by an offset d. The relation between Eq.

5.1 and Eq. 5.3 is intuitive: knowing the centers is very similar to pointing to the

nearest center from every location. It is, however, not quite the same. It assures

every network prediction would map to a center, but does not assure, that there is a

prediction for every center. We will need to deal with this concern later, by assuring

space is well covered, so that there are enough predictions such that at least one

maps to every center. We will denote a scene i shifted to be centered around object

j by a scene network with parameters θ as yθ ,i, j.

Every location that maps to itself, i.e., a fixed point Weisstein (2020a) of ∇, is

an object center. Hence, we try to get a scene network that returns the roots of the

gradient field of the distance function around each object center (Fig. 5.2, c):

argmin
θ

Ei, j[||∇(yθ ,i, j)||22]. (5.4)

5.3.1.3 Learned loss

The key idea is to emulate this oracle with a loss network Lφ having parameters φ

as in

argmin
θ

Ei, j[||Lφ (yθ ,i, j)||22]. (5.5)

The loss network does not need to understand any global scene structure, it

only locally needs to center the scene around the nearest object (Fig. 5.2, d). This

task can be learned by working on local 3D object patches, without scene-level
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supervision. So we can train the loss network on any set of objects ok, translated by

a known offset dk using

argmin
φ

Ek[||dk−Lφ (ok	dk)||2]. (5.6)

As the loss network is local, it is also only ever trained on 3D patches. These

can be produced in several different ways: sampling of CAD models, CAD models

with simulated noise, by pasting simulated results on random scene pieces, etc. In

our experiments, we use a small, labelled scene subset to extract objects as follows:

we pick a random object center and a 3D box of 1 meter size such that at least point

representing an object surface is present in the box. Hence the center of the object

is offset by a random but known dk we regress and subject to natural clutter. Note,

that the box does not, and does not have to, strictly cover the entire object – which

are of different sizes – but must be just large enough to guess the center. Alg. ??

demonstrates how the loss network output can be used to provide scene network

supervision.

5.3.1.4 Varying object count

The above was assuming the number of objects nc to be known. It did so when

assuming a vector of a known dimension as supervision in Eq. 5.1 and did so, when

assuming the oracle Eq. 5.3 and its derivations were returning gradient vectors of

a fixed size. In our setting this number is unknown. We address this by bounding

the number of objects and handling occupancy i.e., a weight indicting if an object

is present or not, at two levels.

First, we train an occupancy branchOφ of the loss network that classifies occu-

pancy of a single patch, much like the loss network regresses the center. We define

space to be occupied, if the 3D patch contains any points belonging to the given

objects surface. This branch is trained on the same patches as the loss network

plus an equal number of additional 3D patches that do not contain any objects i.e.,

occupancy is zero.
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Algorithm 1: L: loss network, S: scene network, k: proposal count, n
3D patch point count, m scene point count.
Lφ : Rn×3→ R3;
Sθ : Rm×3→ Rk×3;
crop : Rm×3→ Rn×3;
while loss training do

x = sampleScene();
o = randObjectCenter();
d = randOffset();
p = crop(x	 (o+d));
∇ = ∂

∂φ
||Lφ (p)−d||22;

φ = optimizer(φ ,∇);
end
while scene training do

x = sampleScene();
c = Sθ (x);
for i = 1 . . .k do

p = crop(x	 ci);
∇i = Lφ (p);

end
θ = optimizer(θ ,∇);

end

Second, the occupancy branch is used to support the training of the scene net-

work which must deal with the fact that the number of actual centers is lower than

the maximal number of centers. This is achieved by ignoring the gradients to the

scene networks parameters θ if the occupancy network reports the 3D patch about

a center to not contain an object of interest. So instead of Eq. 5.5, we learn

argmin
θ

Ei, j[Oφ (yθ ,i, j)Lφ (yθ ,i, j)]. (5.7)

The product in the sum is zero for centers of 3D patches that the loss network thinks,

are not occupied and hence should not affect the learning.

Overlap When neither object centers nor their count is known, there is nothing to

prevent two network outputs to map to the same center. While such duplicates can

to some level be addressed by non-maximum suppression as a (non-differentiable)

post-process to testing, we have found it essential to already prevent them (differ-
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entiable) from occurring when training the scene network. Without doing so, our

training degenerates to a single proposal.

To this end, we avoid overlap. Let v(q1,q2) be a function that is zero if the

bounding boxes of the object in the scene centers do not overlap, one if they are

identical and otherwise be the ratio of intersection. We then optimize

argmin
θ

c1(θ) = Ei, j,k
[
Oφ (yθ ,i, j)Lφ (yθ ,i, j)+ v(yθ ,i, j,yθ ,i,k)

]
. (5.8)

We found that in case of a collision instead of mutually repelling all colliding

objects, it can be more effective if out of multiple colliding objects, the collision acts

on all but one winner object (winner-takes-all). To decide the winner, we again use

the gradient magnitude: if multiple objects collide, the one that is already closest

to the target i.e., the one with the smallest gradient, remains unaffected (v = 0) and

takes possession of the target, while all others adapt.

5.3.1.5 Additional features

For other object properties such as size, orientation, class of object, etc. we can

proceed in two similar steps. First, we know the object-level property vector q, so

we can train a property branch denoted Pθ that shares parameters θ with the loss

network to regresses the property vector from the same displaced 3D patches as in

Eq. 5.6

argmin
φ

Ek[||qk−Pφ (ok	dk)||1]. (5.9)

For scene-level learning we extend the scene network by a branch Tθ to emu-

late what the property network had said about the 3D patch at each center, but now

with global context and on a scene-level

argmin
θ

c1(θ)+α ·Ei, j[|Tθ (yθ ,i, j)−Pφ(yθ ,i, j)|1]. (5.10)

For simplicity, we will denote occupancy just as any other object property and
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Figure 5.4: The object (left) and scene (right) network. Input denoted orange, output blue,
trainable parts yellow, hard-coded parts in italics. Please see Sec. 5.3.2 for a
details.

assume it to be produced by T just, that it has a special meaning in training as

defined in Eq. 5.7. We will next detail the architecture of all networks.

5.3.2 Network

Both networks are implemented using PointNet++ Qi et al. (2017b) optimized using

ADAM. We choose particularly simple designs and rather focus on the analysis of

changes from the levels of supervision we enable.

Loss and occupancy network The loss network branches L and O share parame-

ters φ and both map 4,096 3D points to a 3D displacement vector, occupancy and

other scalar features (left in Fig. 5.4).

Scene network The scene network branches S and T jointly map a point cloud to

a vector of 3D object centers and property vectors (including occupancy), sharing

parameters θ . The box branch S first generates positions, next the scene is cropped

around these positions and each 3D patch respectively fed into a small PointNet++

encoderM to produce crop specific local feature encodings. Finally, we concate-

nate the global scene latent code Sz with the respective local latent code Mz and

pass it through the scene property branch T MLP.

The scene property branch is trained sharing all weights across all instances for

all objects. This is intuitive, as deciding that e.g., a chair’s orientation is the same

for all chairs (the back rest is facing backwards), can at the same time be related to

global scene properties (alignment towards a table).

Instead of learning the centers, we learn the residual relative to a uniform cov-

erage of 3D space such that no object is missed during training. The Hammersley

pattern (Weisstein, 2020b) assures that, no part of 3D space is left uncovered.
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We assume a fixed number of 32,768 input points for one scene. Note, that

we do not use colour as input, a trivial extension. Each MLP sub-layer is an MLP

consisting of 3 fully connected layers where layer 1 has 512 hidden states and the

final layer contains the branch specific output nodes.

Post-process Our scene network returns a set of oriented bounding boxes with oc-

cupancy. To reduce this soft answer to a set of detected objects, e.g., to compute

mAP metrics, we remove all bounding boxes with occupancy below a threshold τo,

which we set to 0.9 in all our results.

In the evaluation, the same will be done for our ablations SLIDING and SUPER-

VISED, just that these also require additional Non-maximum Suppression (NMS) as

they frequently propose boxes that overlap. To construct a final list of detections, we

pick the proposal with maximal occupancy and remove any overlapping proposal

with Intersection over Union (IoU) > .25 and repeat until no proposals remain.

5.4 Evaluation
We compare to different variants of our approach under different metrics and with

different forms of supervision as well as to other methods.

5.4.1 Protocol

Protocol

5.4.1.1 Data sets

We consider two large-scale sets of 3D scanned scenes: Stanford 2D-3D-S dataset

(S3D) (Armeni et al., 2017) and ScanNet (Dai et al., 2017). From both we extract,

for each scene, the list of object centers and object features for all objects of one

class.

We split the dataset in three parts (Fig. 5.5): First, the test dataset is the official

test dataset (pink in Fig. 5.5). The remaining training data is split into two parts: a

labelled, and and unlabelled part. The labelled part (orange in Fig. 5.5) has all 3D

scenes with complete annotations on them. The unlabelled part (blue in Fig. 5.5)
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Figure 5.5: Label ratio.

contains only raw 3D point cloud without annotation. Note, that the labelled data is

a subset of the unlabelled data, not a different set.

We call the ratio of labelled over unlabelled data the label ratio. To more

strictly evaluate transfer across datasets, we consider ScanNet completely unla-

belled. All single-class results are reported for the class chair.

5.4.1.2 Metrics

Effectiveness is measured using the Chamfer distance (less is better) also used as

a loss in Eq. 5.1 and the established mean Average Precision mAP@.25, (more is

better) of a x % bounding box overlap test. X is chosen at 25 %.

5.4.1.3 Methods

We consider the following three methods: SUPERVISED is the supervised approach

define by Eq. 5.1. This method can be trained only on the labelled part of the

training set. SLIDING window is an approach that applies our loss network, trained

on the labelled data, to a dense regular grid of 3D location in every 3D scene to

produce a heat map from which final results are generated by NMS. OURS is our

method. The loss network is trained on the labelled data (orange in Fig. 5.5). The

scene network is trained on the unlabelled data (blue in Fig. 5.5), which includes
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Table 5.1: Chamfer error (less is better) and mAP@.25 (more is better) (columns), as a
function of supervision (rows) in units of label ratio on the S3D class chair.
Right, the supervision-quality-relation plotted as a graph for every method
(colour).

Chamfer error mAP

Ratio SUP SLI OUR SUP SLI OUR

1 % 1.265 .850 .554 .159 .473 .366
5 % .789 .577 .346 .352 .562 .642

25 % .772 .579 .274 .568 .573 .735
50 % .644 .538 .232 .577 .589 .773
75 % .616 .437 .203 .656 .592 .785

100 % .557 .434 .178 .756 .598 .803

the labelled data (but without accessing the labels) as a subset.

5.4.2 Results

Results

5.4.2.1 Effect of supervision

The main effect to study is the change of 3D detection quality in respect to the level

of supervision. In Tbl. 5.1, different rows show different label ratios. The columns

show Chamfer error and mAP@.25 for the class chair trained and tested on S3D.

We notice that across all levels of supervision, OUR approach performs bet-

ter in Chamfer error and mAP than SLIDING window using the same object train-

ing or SUPERVISED training of the same network. It can further be seen, how all

methods improve with more labels. Looking at a condition with only 5 % super-

vision, OUR method can perform similar to a SUPERVISED method that had 20×

the labeling effort invested. At this condition, our detection is an acceptable .642,
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which SUPERVISED will only beat when at least 75 % of the dataset is labelled. It

could be conjectured, that the scene network does no more than emulating to slide

a neural-network object detector across the scene. If this was true, SLIDING would

be expected to perform similar or better than OURS, which is not the case. This

indicates, that the scene network has indeed learned something not known at object

level, something about the relation of the global scene without ever having labels

on this level.

Figure 5.6: Error distributions.

Fig. 5.6 plots the rank distribution (horizontal axis) of Chamfer distances (ver-

tical axis) for different methods (colours) at different levels of supervision (light-

ness). We see that OUR method performs well across the board, SUPERVISED has a

more steep distribution compared to SLIDING, indicating it produces good as well

as bad results, while the former is more uniform. In terms of supervision scalabil-

ity, additional labeling invested into our method (brighter shades of yellow) result in

more improvements to the right side of the curve, indicating, additional supervision

is reducing high error-responses while already-good answers remain.

5.4.2.2 Transfer across datasets

So far, we have only considered training and testing on S3D. In Tbl. 5.2, we look

into how much supervision scaling would transfer to another data set, ScanNet.

Remember, that we treat ScanNet as unlabelled, and hence, the loss network will be

strictly only trained on objects from S3D. The three first rows in Tbl. 5.2 define the

conditions compared here: a loss network always trained on S3D, a scene network

trained on either S3D or ScanNet and testing all combinations on both datasets.
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Table 5.2: Transfer across datasets: Different rows show different levels of supervision,
different columns indicate different methods and metrics. The plot on the right
visualizes all methods in all conditions quantified by two metrics. Training either
on S3D or on ScanNet. The metrics again are Chamfer error (also the loss) and
mAP@.25. colours in the plot correspond to different training, dotted/solid to
different test data.

Loss: S3D S3D
Scene: S3D SCANNET

Test: S3D ScanNet S3D ScanNet

Ratio Err. mAP Err. mAP Err. mAP Err. mAP

1% 0.554 .366 1.753 .112 0.579 .296 0.337 .548
5% 0.346 .642 0.727 .138 0.466 .463 0.703 .599

50% 0.232 .773 0.588 .380 0.447 .497 0.258 .645
100% 0.178 .803 0.789 .384 0.336 .555 0.356 .661

Column two and three in Tbl. 5.2 and the dotted violet line in the plot, iterate

the scaling of available label data we already see in Tbl. 5.1 when training and

testing on S3D. Columns four and five, show a method trained on S3D but tested on

ScanNet. We find performance to be reduced, probably, as the domain of ScanNet is

different from the one of S3D. If we include the unlabelled scenes of ScanNet in the

training, as seen in columns six to nine, the quality increases again, to competitive

levels, using only S3D labels and 0 % of the labels available for ScanNet.

Tbl. 5.3 further illustrate the loss network: how good are we at finding vectors

that point to an object center? We see that the gradient error and the confidence

error, both go down moderately with more labels when training and testing on S3D

(violet). The fact that not much is decreasing in the loss network, while the scene

network keeps improving, indicates the object task can be learned from little data,
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Table 5.3: Performance of the loss network for different label ratio (rows) on different test
data and according to different metrics (columns). 1Class not present in Scan-
Net.

S3D SCANNET

Ratio Class #Sce #Obj Err. Acc. Err. Acc.

1 % chair 11 2400 .0085 .853 .0099 .843
5 % chair 54 16,000 .0052 .936 .0075 .899

25 % chair 271 47,200 .0049 .949 .0071 .907
50 % chair 542 121,191 .0046 .953 .0069 .902
75 % chair 813 162,000 .0045 .955 .0065 .920

100 % chair 1084 223,980 .0043 .960 .0068 .911

5 % table 54 5060 .0078 .921 —1 —1

5 % bcase 54 4780 .0093 .819 —1 —1

5 % column 54 2780 .0100 .855 —1 —1

and less object-level supervision is required than what can be learned on a scene

level, still. We further see, that the loss network generalizes between datasets from

the fact that it is trained on S3D (violet curve) but when tested on ScanNet (green

curve) goes down, too.

Besides seeing how quality scales with the amount of labelled supervision for

training the loss network, it is also relevant to ask what happens when the amount

of unlabelled training data for the scene network is increased while holding the

labelled data fixed. This is analysed in Tbl. 5.4. Here we took our loss network and

trained it at 5 % label ratio on S3D and tested on ScanNet. Next, the scene network

was trained, but on various number of scenes from ScanNet, which, as we said, is

considered unlabelled. The number of scenes changes over columns, resp. along the
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r

Table 5.4: Chamfer error and mAP@.25 reported for varying the number of scenes.
OUR

#Sce Err. mAP

66 .643 .079
330 .509 .242

1648 .506 .360
3295 .457 .412
4943 .435 .479
6590 .407 .599

horizontal axis in the plot. We see that without investing any additional labelling

effort, the scene network keeps increasing substantially, indicting what was learned

on a few labelled S3D objects can enable understanding the structure of ScanNet.

5.4.2.3 Different classes

Tbl. 5.1 was analyzing the main axis of contribution: different levels of supervision

but for a single class. This has shown that at around a label ratio of 5 % OUR method

performs similar to a SUPERVISED one. Holding the label ration of 5 % fixed and

repeating the experiment for other classes, is summarized in Tbl. 5.5. We see, that

the relation between SUPERVISED, SLIDING and OURS is retained across classes.

5.4.2.4 Comparison to other work

In Tbl. 5.6 we compare our approach to other methods. Here, we use 20 % of

ScanNet V2 for testing and the rest for training. Out of the training data, we train

our approach once with 100 % labelled and once with only 5 % labelled. Other
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Table 5.5: Chamfer error (less is better) and mAP@.25 precision (more is better)
(columns), per class (rows) at a supervision of 5 % labeling ratio.

Chamfer error mAP

Class SUP SLI OUR SUP SLI OUR

chair 0.789 0.577 .346 .352 .562 .642
table 1.144 1.304 .740 .282 .528 .615

bookcase 1.121 1.427 .979 .370 .298 .640
column 0.900 2.640 .838 .490 .353 .654

Table 5.6: Performance (mAP(%) with IoU threshold .25) of different methods (rows) on
all classes (columns) of ScanNet V2. 15 images. 2Only xyz. 3Their ablation;
similar to our backbone.
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3DSIS1 Hou et al. (2019) 19.8 69.7 66.2 71.8 36.1 30.6 10.9 27.3 0.0 10.0 46.9 14.1 53.8 36.0 87.6 43.0 84.3 16.2 40.2
3DSIS2 Hou et al. (2019) 12.8 63.1 66.0 46.3 26.9 8.0 2.8 2.3 0.0 6.9 33.3 2.5 10.4 12.2 74.5 22.9 58.7 7.1 25.4
MTML Lahoud et al. (2019) 32.7 80.7 64.7 68.8 57.1 41.8 39.6 58.8 18.2 0.4 18.0 81.5 44.5 100.0 100.0 44.2 100.0 36.4 54.9
VoteNet Qi et al. (2019) 36.3 87.9 88.7 89.6 58.8 47.3 38.1 44.6 7.8 56.1 71.7 47.2 45.4 57.1 94.9 54.7 92.1 37.2 58.7
BoxNet3 Lahoud et al. (2019) No per-class information available 45.4
3D-BoNet Yang et al. (2019) 58.7 88.7 64.3 80.7 66.1 52.2 61.2 83.6 24.3 55.0 72.4 62.0 51.2 100.0 90.9 75.1 100.0 50.1 68.7

Ours 100 % 43.0 70.8 58.3 16.0 44.6 28.0 13.4 58.2 4.9 69.9 74.0 75.0 36.0 58.9 79.0 47.0 77.9 48.2 50.2
Ours 5 % 38.1 68.9 58.9 88.8 42.5 21.1 9.0 53.2 6.8 53.9 68.0 62.3 26.5 45.6 69.9 40.4 66.9 48.0 48.3

methods were trained at 100 % label ratio.

We see that our approach provides competitive performance, both at 100 % of

the labels, as well as there is only a small drop when reducing supervision by factor

20×. Our mAP at 100 % of the labels is better than both variants (with and with-

out colour) of 3DSIS Hou et al. (2019) from 2018 and similar to MTML Lahoud

et al. (2019) from 2019. VoteNet Qi et al. (2019) and 3D-BoNet Yang et al. (2019)

are highly specialised architectures from 2019 that have a higher mAP. We have

included BoxNet from Qi et al. (2019), an ablation they include as a vanilla 3D

detection approach that is similar to what we work with. We achieve similar even



5.5. Discussion 88

Figure 5.7: Qualitative results of our approach and the ground truth for chair on S3D.

slightly better performance, yet at 5 % of the supervision. In some categories, our

approach wins over all approaches. We conclude that a simple backbone architec-

ture we use is no contribution and cannot win over specialised ones, but that it also

is competitive to the state-of-the-art. We should note here, as we do not carry out

Semantic instance segmentation in our network, we did not test on the official test

ScanNet benchmark test set. Instead, we reserve 20% of the labelled training scenes

for testing.

5.4.2.5 Qualitative results

Fig. 5.7 shows qualitative example results of our approach.

5.4.2.6 Computational efficiency

Despite the additional complexity in training, at deployment, out network is a direct

and fast forward architecture, mapping a point cloud to bounding boxes. Finding

20 proposals in 32,768 points takes 189 ms, while the supervised takes the same

amount of time, with the small overhead of a NMS (190 ms) on a Nvidia RTX

2080Ti. Our CPU implementation of sliding window requires 4.7 s for the same

task on a i7-6850K CPU @ 3.60GHz. All results are computed with those settings.

5.5 Discussion
How can OURS be better than the SUPERVISED? It is not obvious why at 100 %

label ratio in Tbl. 5.1, the SUPERVISED architecture performs at an mAP of .756
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while OURS remains slightly higher at an mAP of .803. This is not just variance of

the mAP estimation (computed across many identical objects and scenes).

A possible explanation for this difference is, that our training is no drop-in

replacement for supervised training. Instead, it optimizes a different loss (truncation

to the nearest object and collision avoidance) that might turn out to be better suited

for 3D detection than what it was emulating in the beginning. We, for example, do

not require NMS. As our training does not converge without those changes to the

architecture, some of the effects observed might be due to differences in architecture

and not due to the training. We conjecture future work might consider exploring

different losses, involving truncation and collision, even when labels are present.

Why Hammersley? Other work has reasoned about what intermediate points to use

when processing point clouds. When voting Qi et al. (2019), the argument is, that

the centers of bounding boxes are not part of the point set, and hence using a point

set that is any subset of the input is not a good solution. While we do not vote, we

also have chosen not to use points of the scene as the initial points. We also refrain

from using any improved sampling of the surface, such as Poisson disk (Hermosilla

et al., 2018) sampling as we do not seek to cover any particular instance but space

in general, covered by scenes uniformly.

How can the scene network be “better” than the loss network? As the loss net-

work is only an approximation to the true loss, one might ask, how a scene network,

trained with this loss network, can perform better than the loss network alone, e.g.,

how can it, consistently (Tbl. 5.1, 5.2, 5.4 and 5.5), outperform SLIDINGWINDOW?

Let us assume, that a scene network trained by a clean supervision signal can

use global scene structure to solve the task. If now the supervision signal would start

to be corrupted by noise, recent work has shown for images Lehtinen et al. (2018) or

point clouds Hermosilla et al. (2019), that a neural network trained under noise will

converge to a result that is very similar to the clean result: under L2 it will converge

to the mean of the noise, under L1 to its median, etc. The amount of variance of

that noise does not influence the result, what matters is that the noise is unbiased. In

our case, this means if we were to have supervision by noisy bounding boxes, that
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would not change anything, except that the scene network training would converge

slower but still to the mean or median of that noise distribution, which is, the correct

result. So what was done in our training, by using a network to approximate the loss,

means to just introduce another form of noise into the training.

5.6 Conclusion
In this chapter, we have proposed a novel training procedure to reduce the 3D la-

belling effort required to solve a 3D detection task. The key is to first learn a loss

function on a small labelled local view of the data (objects), which is then used

to drive a second learning procedure to capture global relations (scenes). The way

to enlightenment here is to “find your center”: the simple task of taking any piece

of 3D scene and shifting it so it becomes centered around the closest object. Our

analysis indicates that the scene network understands global scene structure not ac-

cessible to a sliding window. Our network achieves state of the art results, executes

in a fraction of a second on large point clouds with typically only 5 % of the la-

belling effort. We have deduced what it means exactly to learn the loss function,

the new challenges associated with this problem and proposed several solutions to

overcome these challenges.



Chapter 6

Object Detection with Single

Geometric Examples

6.1 Introduction

In Chapter 5 we observed that deep learning systems can be trained on significantly

less labelled supervision, when compared to standard dense supervised learning. In

this chapter we move further in this direction and develop a methodology to infer 3D

scene properties using the input data as the only supervision signal. Furthermore,

we restrict the input data to 2D images of the 3D scene. This task is commonly

known as 3D monocular object detection and despite being a long-standing prob-

lem, is still a very activate research area. (Park et al., 2021; Zhang et al., 2021b,a;

Liu et al., 2021).

The above approaches all come at the cost of manual labelling of 3D super-

vision, preventing application to the “heavy tail” of important tasks where no 3D

scene supervision (position, orientation, colour etc.) is available, and users have

to make do with no more than a set of 2D images. For this reason, many works

attempt to infer 3D properties with 2D-only self-supervision (Kato et al., 2018;

Chen et al., 2019; Henzler et al., 2019; Tulsiani et al., 2017; Henderson, Ferrari,

2019; Han et al., 2020). In this paper, we address the common situation where the

geometry of the object is known, however, scene labels are not available. Such

scenarios are common in industrial environments where components are designed
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using Computer Aided Design software, as well as scenarios where object geometry

is consistent (i.e., cars, street furniture etc.). Armed with just a 3D geometric rep-

resentation and unlabelled 2D images, we aim to recover the position, orientation,

colour, and illumination for every relevant object in the scene.

Our approach uses a common Convolutional Neural Network (CNN) and

multi-layer perceptron (MLP) network to map an image to an explicit and inter-

pretable 3D scene code that controls a Differentiable Renderer (DR). This scene

code, like a scene graph, has direct meaning and can be used in other downstream

tasks such as loading it into a 3D graphics application for manipulation or re-

synthesis with many applications in augmented and virtual reality. Alternatively,

the scene code itself can be used directly for 3D scene understanding tasks such a

3D object detection.

This problem is difficult, as unfortunately, direct application of a DR for self-

supervised learning will not result in a reliable optimisation. Consider (Fig. 6.1,

left), a typical 3D scene made of the 3D position of a quad and its RGB colour,

an apparently simple 6D problem, and further consider this is to be learned from

2D images of the 3D quad in front of a solid background. Now, if gradient descent

starts to minimise a L2-like error (L1,L2, Huber norm, etc.), in almost every case,

the initial guess is far off the right values (“Iter 1” to “Iter n” in Fig. 6.1). To

satisfy a L2-like loss, the best thing to do is to make the quad small in 2D, e.g.,

by moving it away from the viewpoint, and have the colour become the one of the

background at that image position, even if it is not at all the position of the quad

in the image and neither its colour. This is just one of the many ambiguities that

exist in the mapping between scene parameters and images. Essentially, in almost

every position of the optimisation space, following the gradient leads to an unusable

solution. Furthermore, even if for one optimisation step there is an overlap and the

gradient was meaningful, it will be followed by too many bad ones to be useful.

We found this problem can be overcome by enforcing samples generated by

the DR to match the distribution of the input dataset. We implement this by in-

troducing a second network, akin to a critic (or discriminator) in adversarial train-
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ing Goodfellow et al. (2014). The by-the-book example for adversarial training is

super-resolution Ledig et al. (2017), a low-resolution patch can be explained by

many high-resolution patches, but their average, which a network without a critic

will find, is not a valid high-resolution patch. In our case, however, the degenerate

solutions (e.g., small “mini chameleon” quads hiding in the back) are valid samples

from the data distribution. Nothing is wrong with an individual sample. They are

also not an average of many solutions, they are not blurry, they are just small quads

as they occur in the data distribution. The key is, that the overall distribution of

such solutions, rendered back to an image, is far from the original data distribution.

Hence, a critic will push the optimisation to not rely on the same (and incorrect)

answer all the time and be “curious” instead. It forces the optimiser to continue

looking for a better solution within the data distribution. Eventually, the optimi-

sation discovers a solution that is not always the same, and ultimately, even more

correct in the L2-like sense. The critic avoids the “easy reward” from following the

gradient of the L2-like loss. Our instrumentation assures this cannot be achieved

by just weighting L2 differently, by using higher learning rate, more randomisation,

longer learning, or other hyper-parameters.

Whilst our scene parameterization can be used for many downstream tasks, we

evaluate our method on the most direct application of the parameterization itself, 3D

object detection. Specifically, we tackle the problem of 3D object detection from

monocular 2D images learned from 2D-only self-supervision with known geome-

try. We evaluate our approach on increasingly complex synthetic scenes as well

as real scenes where the background is constant. Finally, we demonstrate the ef-

fectiveness of our approach where the background is also unknown by randomly

generating training data from the full distribution of possible parameters using a

simple rendering pipeline on cluttered backgrounds. We find such an approach

achieves state-of-the-art results for unsupervised methods on the LineMOD dataset

Hinterstoisser et al. (2011).
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Figure 6.1: Curiosity-driven and direct learning: This simple world comprises of quads
with different positions and depth as well as varying colour. Starting from a set
of 2D images (three shown), we could train a mapping to directly produce 3D
scene parameters (position and colour of the quad). Unfortunately, L2 rendering
gradients will make the optimisation converge (blue plot) to the wrong solution
of very small quads with the colour of the background in almost all cases.
Our curiosity-driven approach adds a critic to look at the re-rendering of the
3D scene parameters, forcing the optimisation to keep trying unless it finds a
solution that matches the 2D image data distribution (red plot). Such learned
parameters start to have meaningful gradients, and following them, ultimately,
leads to a better solution (star).

6.2 Problem Statement
We aim to solve the task of 3D monocular object detection from a coloured RGB

image I ∈ Rh,w,3. A scene is parameterised as a set on n-objects o which are them-

selves parameterised as o ∈ R f where f is the x, y, z object center and θ rota-

tion. Our solution requires only a geometric representation G which in our case

is triangulated mesh. Supervised training is replaced with an analysis-by-synthesis

render-and-compare approach using a differentiable renderer R. Our optimisation

is formally

argmin
θ

= E[||Ii−R(E(Ii),G)||22]

where E is a CNN encoder with learnable parameters θ .

6.3 Differentiable Rendering with Curiosity
Input to our network G is a 2D image I and output is a scene code s. The network

is a composition G(I) =R(E(I)) of an encoder E and a DR R. The encoder is a
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CNN that has learnable parameters θ to first map to a latent code z and an MLP

to map this code to an explicit scene code s. The DR has no learnable parameters,

and additionally, requires only a geometric representation of desired objects. At

test time the rendering (and therefore geometric representation) is not necessary

for tasks only requiring the scene code s (e.g., 3D object detection). However, for

re-synthesis tasks, we can directly modify individual nodes s i of the scene code

s to manipulate specific elements on the input image, such as shape, colour, and

orientation.

Figure 6.2: Our architecture is simple. First, a learned mapping encodes an RGB image to
scene parameters and second, a fixed differentiable renderer maps the predicted
parameters to an image. Loss is between input and output images, and at de-
ployment we are interested in the scene code for downstream tasks. Training
this analysis-by-synthesis loss without a critic influencing the generated data
distribution will almost never converge due to ambiguity (see Fig. 6.1).

Common analysis-by-synthesis would minimise

L(θ) = ||Gθ (I)− I||2.

We do not seek to minimise another criterion and would argue there is no need to

do so.

The problem is that for almost every possible parameter θ , the gradients dL
dθ

will make the result worse due to the countless ambiguities in image formation.

Consider for example, a badly placed circle resulting from a choice of parameters

θ1 in a 2D problem of position θx and radius θr. No small change to its parameters

will improve the L2 error with respect to the input image. Instead, gradients will

point towards a solution where the sphere just gets smaller or hides in the back-
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ground colour (if this is part of the scene vector). However, there are positions θ2,

where gradients indeed lead to improvement, i.e, when the scene code places the

re-rendering of the sphere “closer” (this is not limited to space but happens in the

high-dimensional scene code space) to the correct solution. How can we distin-

guish those sub-spaces of the solution space from others and gear the optimisation

to follow these?

The key observation is that the re-rendered solutions from invalid local min-

ima —in a reverse Anna Karenina principle fashion, according to which all good

solutions would be similar and all bad ones unique— will result in a distribution of

re-rendered scenes that are all very similar, e.g., all spheres would come out small.

And this distribution is different from the input distribution. So, all that is needed

to push the distributions to become similar, is a second network to compare the data

and generated distribution (a critic, in a Generative Adversarial Network (GAN)):

L(θ) = ||Gθ (I)− I||2 +λ ·C(Gθ (I)).

Our curiosity term is versatile and can influence our scene parameterization

network in various ways, depending on the task. For example, if s ∈ R6 our critic

will enforce the distribution to match both position (x,y,z) and colour (r,g,b) of

the input distribution. On the other hand, if s ∈ R6, but all objects in the input

images are the same colour, the critic would constrain the parameterization network

to always produce predictions with a single fixed object colour.

In practice our critic is a simple fully-convolutional CNN encoder Cθ : I ∈

Rh×w×3→ R1∈[0,1].

6.3.1 Differentiable Rendering with Confidence

In the above formulation, analysis-by-synthesis with curiosity works well if we have

a fixed-size parameter vector, however, would struggle when the number of objects

in the scene is unknown. In the 2D or 3D object detection literature, this is routinely

resolved by working with a number of proposals which all carry a confidence (Qi

et al., 2019). This is then used to suppress objects with a low confidence (visible to
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the loss or not). However, without scene-level labels, we not only lack information

of object parameters, but also the object count for a given scene.

Figure 6.3: Confidence in the ideal and real case, and how it is learned. Top row shows a
case of two spheres in a scene, bottom row shows a case of one sphere in scene.

Consider a network which outputs a confidence for every object as part of the

scene code s. Ideally, it would be 0 for proposals where no object is present, and 1

for correct proposals, as seen in Fig. 6.3, left, but in practice is a fraction as seen in

Fig. 6.3, middle. This confidence has to affect how the scene is rendered if we want

it to be learned. Simply turning an object on and off based on any threshold is not

differentiable. Instead, we suggest a soft rendering (Rc) which enables the network

to learn to hide redundant predictions.

The easiest way to implement a soft rendering would be to modify the objects

transparency in the DR. However, as the DR we use in our experiments (Li et al.,

2018a) does not support transparency, we emulate the behavior as follows: we first

render the scene without any objects and then with every object in isolation, all with

an alpha channel. These images are then composed back-to-front using confidence

as alpha, which is a differentiable operation itself. This is correct for first-hit rays,

but incorrect for the compositing of higher-order shading (a confident object casting

no shadow at one pixel, might override the correct shadow of another confident

object). In the future we expect DRs to support transparency, allowing us to benefit

from guidance by shadow and global illumination for multiple objects. Note that all

results where the object count is known, do have correct unbiased image synthesis

and benefit from shadow, reflection, etc. informing the loss.
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Figure 6.4: Samples from the different datasets we study.

6.4 Implementation

6.4.1 Network architecture

In this section we give further details of our neural network architectures. For sim-

plicity we ignore the batch dimension.

Our encoder is an approximation of the AlexNet architecture. Input is a 3-

channel colored image with size 128× 128. At each layer we reduce the image

dimensions using strided convolutions, avoiding the need for max pooling opera-

tions. We use a Rectified Linear Unit (ReLU) for all non-linear activations. Whilst

a deeper network, or one with more modern operations (e.g., Residual connections),

would likely have helped overall performance, we aimed to keep are architecture as

simple as possible to explore the relative benefits of our proposed learning approach.

Table 6.1: AlexNet encoder architecture details.

Layer Out Size Batch Norm Activation
C1 Conv 2D [64, 30, 30] True ReLU
C2 Conv 2D [192, 14, 14] True ReLU
C3 Conv 2D [384, 7, 7] True ReLU
C4 Conv 2D [256, 4, 4] True ReLU
C5 Conv 2D [64, 1, 1] False ReLU

Parameters: 2,029,056

Our critic architecture is fully convolutional, and therefore contains no fully
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connected layers. Unlike the image encoder we find Leaky ReLU activation func-

tions to be more effective. The critic also contains no max pooling layers, using

convolutions with either stride=2 or stride=4 to reduce the image size. Input is a 3-

channel coloured image with size 128×128. In particular with the critic, we found

normalisation to be important. Whilst both Instance Normalisation and Batch Nor-

malisation proved to be effective, all results in the paper were obtained using Batch

Normalisation.

Table 6.2: Critic architecture details.

Layer Out Size Batch Norm Activation
C1 Conv 2D [64, 30, 30] True Leaky ReLU
C2 Conv 2D [192, 7, 7] True Leaky ReLU
C3 Conv 2D [384, 4, 4] True Leaky ReLU
C4 Conv 2D [256, 2, 2] True Leaky ReLU
C5 Conv 2D [64, 1, 1] False Sigmoid

Parameters: 1,883,713

The parameter prediction MLP contains a single shared trunk layer followed by

respective parameter branches. No weights are shared on any branch layers. After

the shared layers (trunk) we resize the vector to size n×d where n is the number of

object predictions and d number of feature dimensions. We find this effective as it

enables each prediction to have its own independent feature transformation. Center

predicts the per-object translation offset in camera space. RGB predicts an per-object

RGB colour. Confidence predicts a per-object confidence which is subsequently

used as an opacity value for differentiable rendering with varying objects. Light

predicts a per-scene light direction along a hemisphere above the scene.

For experiments where a canonical mesh orientation, and ground plane are

assumed, Rotation predicts the per-object i, j rotation vector direction. The final

rotation r around the y-axis is calculated as r = arctan2( j, i). For experiments where

this is not the case (BUNNY, LINEMOD) we instead using a 6D rotation represen-
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tation as proposed by Zhou et al. (2019b). We choose this representation as it is

continuous unlike other representations (Euler angles, rotation matrix, Quaternions

etc.), which is more suitable for gradient decent optimisations.

We do not use any normalisation in between MLP layers.

Table 6.3: Parameter MLP network architecture.

Layer Out Size Activation
Trunk Fully Connected [64, 1] ReLU

Center
Fully Connected [n, 64] ReLU
Fully Connected [n, 3] Linear

Rotation
Fully Connected [n, 64] ReLU
Fully Connected [n, 2] TanH

RGB
Fully Connected [n, 64] ReLU
Fully Connected [n, 3] Sigmoid

Confidence
Fully Connected [n, 64] ReLU
Fully Connected [n, 1] Sigmoid

Light
Fully Connected [1, 64] ReLU
Fully Connected [1] Linear

Parameter range: 4,387 - 48,266

6.4.2 Training details

All networks were implemented in the PyTorch v1.7 framework. A list of hyperpa-

rameters are shown in Tab. 6.4. We trained all models until a convergence threshold

based on the image loss is reached. Due to the nature of generator-critic min-max

games, we found the critic loss to be an unreliable indicator of convergence. Net-

work training times took between 12-36 hours on a single Nvidia 2080ti depending

on task. To allow for a high batch size we utilise virtual batch sizes to avoid running

into memory constraints. We achieve this by running multiple forward passes with a

smaller batch size and accumulating the gradients before running a backwards pass

through our network.
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Table 6.4: List of hyperparameters used to train networks.

Hyperparameter Value
Batch size 128
Optimizer Adam (β1: 0.9, β2: 0.999)

Generator Learning rate 1e-4
Critic learning rate 1e-6

Image Loss λ 0.01
Critic loss λ 10

Gradient L2 clipping 0.5

6.5 Results
We will first analyse our approach on synthetic scenes (Sec. 6.5.1) before applying

it to real photos (Sec. 6.5.2). Finally, we evaluate our approach on the popular

LineMOD dataset for 6-DOF pose estimation of single objects.

6.5.1 Analysis

Tasks We consider a synthetic dataset of renderings of 3D scenes with different

parameters (Fig. 6.4 and Tbl. 6.5).

CIRCLES (l) is a single red 2D circle of constant radius in front of a black

background. SPHERE (u) is a 3D world with three spheres of varying colour. Ob-

jects in this task and all following are placed via rejection sampling such as to not

intersect. CHAIRS (Y) is a 3D world with five chairs placed on the ground plane

at different positions and orientations. VARIED (X) comprises of a varying num-

ber of between 2 and 5 spheres of random position and colour. This is the first

task where confidence-based rendering (Sec. 6.3.1) is used. MULTI (t) has eight

objects: four sets of two letters (WXYZ), with random colours, placed on the ground

plane at random positions and orientations. LIGHT (H) is a 3D world with a varying

number of different objects in it (capsules, boxes, cones), all at random positions

and orientations on a ground plane and illuminated by a single changing “sunlight”

illumination, that is part of the scene description.

For every task we consider a set of 2000 images, labelled with the scene pa-

rameters (hidden to our training) with 500 images for validation and 500 images for

testing. We will later consider fractions of this supervision.
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Table 6.5: Latent scene code structure.

Dataset D
oF

Fr
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n

To
n

R
ea

l
3D
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e

Sh
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e
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CIRCLES l 2 1 1 7 7 3 7 7 7 7

SPHERE u 6 3 3 7 3 3 3 7 7 7

CHAIRS Y 5 5 5 7 3 3 7 3 7 7

VARIED X 7 2 5 7 3 3 3 7 7 7

MULTI t 9 8 8 7 3 3 3 3 3 7

LIGHT H 11 2 10 7 3 3 3 3 3 3

SPHERE REAL 6 3 3 3 3 3 3 7 7 7

BUNNY 6 1 1 3 3 3 3 3 7 7

SHAPES 6 5 12 3 3 3 3 3 3 7

Methods We consider three methods: The first is a hypothetical baseline that has

access to the ground truth scene parameters learned with a supervised loss. We study

three variants of this method which use 5% (Super5), 10% (Super10) and 100% of

the supervision. While our method is trained from images alone, we have to define a

supervised loss for this baseline. Direct L2 between scene parameters cannot work,

as it implies object order. Direct application of a Chamfer loss based on position

is not practical as it would ignore all non-positional attributes, and it would not be

clear how to handle global attributes like light direction. Hence, we first compute

the optimal assignment P between no objects according to only position x, and then

a w-weighted norm between the scene object attributes y, including position, and

the global attributes z of scene A and scene B, paired by P, as in

L(A,B) =
no

∑
i=1

np

∑
j=1

w j||yA
i, j−yB

Pi, j||+ ||z
A− zB||,

with P = argmin
Q

no

∑
i=1
||xA

i −xB
Qi
||. (6.1)

NonCur is a basic self-supervised method, without our curiosity term (L2 loss

only) while Our is our full method (L2 and critic).

All methods use the same architecture, and only differ by their supervision.

Input is a 3-channel coloured image with size 128×128 image, that is reduced to a
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single latent code z of 64 dimensions in 7 steps (with Batch norm and ReLU). An

MLP with three non-linear projection layers maps the latent code z into a scene code

s of a size that depends on the task (between 2 and 11 values, see Tbl. 6.5) to control

the DR (Fig. 6.2). The first layer of the MLP is a shared trunk, while the second and

third layers produce the respective scene parameters used in independent branches

for each group: one for 3D position, 2D rotation, 3D colour, 1D confidence and 2D

light.

Metrics We apply two different metrics: Eq. 6.1 on the resulting scene parameters

and image error, where we render the scene from a novel viewpoint (to avoid single

image scale ambiguity) with the estimated and the ground truth scene parameters

and compare the images using Structural Dissimilarity (DSSIM). We report num-

bers as a ratio relative to the fully supervised method on that task (not shown; it

always is 1.00), as this is the upper bound of our relatively simple detection net-

work.

Findings We computed the result of all methods on all synthetic datasets for all

metrics (Tbl. 6.6). The main finding is, that Our method with curiosity performs

better than NonCur which has no curiosity. This is compared with methods that have

supervision (and do not need curiosity) at 5 % (Super5) and 10 % (Super10) of the

data. Unsurprisingly, more supervision leads to lower errors. The performance

of full supervision is shown as a thick line in the plot of Tbl. 6.6 and matches

1.00. We see that in most tasks and for several metrics our method can perform

similar to the 100 %-supervised baseline, while it had no access to scene labels.

In general, the difference in scene parameter error is larger than the one in image

error. In particular, the scene parameter error is too high for NonCur to be plotted.

More surprisingly, and affirmative, differences according to both metrics seem to

be diminishing when the task gets more complex, e.g., comparing the progression

of l Circles / u Spheres / Y Chairs vs. l Circles / u Spheres / Y Chairs, we see

that the gap between supervision and no supervision closes, a progression found for

both metrics.

Fig. 6.10 shows qualitative results for selected tasks. The parameter vector
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Table 6.6: Different methods and supervisions (columns) according to different metrics for
different data sets (rows). The plot shows the 100 % supervision-reference as a
thick line.

Super5 Super10 NonCur Our

Img Para Img Para Img Para Img Para

CIRCLESl 2.31 8.69 1.61 3.51 5.08 3621.83 0.94 1.11
SPHERESu 1.67 2.33 1.59 2.29 1.68 8.97 1.19 1.87
CHAIRSY 1.06 3.48 1.04 1.54 2.23 51.78 1.03 1.40
VARIEDX 1.48 10.61 1.27 5.84 2.28 22.47 1.25 5.04
MULTIt 1.73 2.59 1.28 1.78 2.11 18.98 1.14 1.51
LIGHTH 2.55 5.44 1.24 2.53 3.09 18.65 1.12 2.05

Table 6.7: Details of the per-parameter error of different methods in ratios with respect to
a supervised reference. The ratio indicates, by what factor a method is worse,
compared to a 100% supervision-baseline.

Position (m) Colour (MSE) Rotation (Deg) Confidence (MSE) Direction (deg)

5% 10% NC O 5% 10% NC O 5% 10% NC O 5% 10% NC O 5% 10% NC O

CIRCLE 8.69 3.51 362 1.11 — — — — — — — — — — — — — — — —
SPHERE 5.14 3.79 18.77 2.88 2.36 1.67 4.94 1.46 — — — — — — — — — — — —
CHAIR 2.89 2.22 206 1.19 — — — — 3.64 1.37 12.1 1.45 — — — — — — — —
VARIED 5.29 2.65 4.91 1.25 2.50 1.72 4.51 1.74 — — — — 20.9 11.3 48.3 10.1 — — — —
MULTI 2.76 2.20 28.43 1.41 2.37 1.55 4.43 1.69 2.52 1.32 16.5 2.95 — — — — — — — —
LIGHT 4.01 2.18 41.57 1.39 2.06 1.49 2.95 1.55 1.92 1.51 14.0 1.24 14.8 5.33 20.2 4.47 1.62 1.32 1.54 1.14

is visualised as a scene graph in an 3D modelling application. Note, that only the

orientation, positions etc. (as defined in Tbl. 6.5) is part of our method’s output.

Tbl. 6.7 splits the parameter error of all scenes between all applicable classes

of scene parameters (position, colour, orientation, confidence, and light direction)
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present in our scenes. We see the largest error ratio to be found with position, in

particular for NonCur. Extracting the colour in the simple scenes we use is not a

particularly hard task, so we find all methods to not lose much quality from less

supervision. The error ratios for rotation are smaller, probably as when the network

already has learned to position the object, getting rotation right is an easier optimi-

sation task. The confidence error ratio is higher for (t Multi) than for (H Light),

likely as the object geometry between shapes in the latter have a higher variance. It

could be hypothesised that varied illumination also helps understanding, but we did

not study this difference. Finally, (H Light) contributes little to the overall error,

indicating the network has learned light direction from 2D images alone, almost as

it had done with supervision.

Figure 6.5: Solving an analytic problem with and without curiosity. Blue points are initial
and red points ground truth; grey lines show correspondence. Optimisation is
the blue-red trajectory.

Validation experiment The effect of curiosity can be verified for a very basic ana-

lytic 2D problem, finding positions (x) and luminance (l) of N objects in N images.

We visualise the N solution as a red 2D point set in the position-luminance plane

in Fig. 6.5. Starting from random initial guesses (blue 2D points in Fig. 6.5, a),

optimising those N problems independently, analysis-by-synthesis will in almost

all cases converge (trajectories and blue points in Fig. 6.5, a) to a degenerate and

incorrect l = 0. Consider a world where x and l follow a uniform random distri-

bution. Deviation of the set of resulting x, l pairs from a uniform distribution can

be measured by computing discrepancy in closed form. This deviation provides an
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idealised measure of curiosity. Adding this term forces the distributions of solutions

to be uniform over the x, l plane (Fig. 6.5, b), finds the correct solution for almost

all problems jointly.

To generate our training dataset, we sample parameters p∈Rt,l from a uniform

distribution D : {t, l} ∼ U(0,1). Our optimisation then becomes

argmin D(p̂−D),

where D is a distance metric defined below.

We define D such that it allows for gradient-based parameter optimisation.

First, we note that a uniform distribution U would have a constant density across the

parameter space. Therefore, we aim to penalise p̂ varying from a constant density.

This variation we refer to a discrepancy D.

We can measure D by testing for a low discrepancy pattern between all possible

subsets of p̂ and a random sampling S ∼ D. The size N of sampling S here is

not strictly important, so long as it represents D sufficiently. In our experiments

N = 300.

First, we calculate the density with a Kernel Density Estimate (KDE) E. Whilst

it would be tempting to compute E using common methods such as a box or Epech-

nikov approach, these would not be differentiable. Instead, we use a steep Gaussian

kernel

K = exp(−(||p̂−S||)2).

Next, we compute KDE estimates E for each point e ∈ K as

1
2
(ei

t + ei
l).

Finally, we calculate the variance in the KDE response (discrepancy) E as

D =
1

N−1

N

∑
i=0

(Ei− Ē)2.

This is the scalar value we minimise in the optimisation.
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Figure 6.6: Renderings of parameters at regular intervals during optimisation for a) with-
out curiosity and b) with curiosity. When image loss is used without a curiosity
term the parameters degrade into an out-of-distribution solution where lumi-
nance l tends towards 0
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Figure 6.7: Visualisation of the parameter space when rendered.

When a simple L2 loss is used and no distribution is enforced (Fig. 6.6 top)

the optimisation almost always falls into the local-minima of turning the circle black

(l = 0). This is the same phenomenon we experience in the main paper for NonCur

experiments. We observe this because the majority of gradients for l point towards

the black background. As a result, the overall gradient is dominated by this incorrect

force. This is visible in the main paper Fig. 6 (left) as parameters falling towards

the bottom of the chart. By enforcing p̂∼D, we see that when the parameters start

to fall, they are push back up, where they find more dominant L2 gradients main

paper Fig. 6 (right).
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6.5.2 Real world data

While we have initially evaluated our approach in a virtual setting, which is suitable

for instrumentation as all scene parameters are known, we now take it to a real

setting, where parameters are unknown.

Data For training data, we capture sequences of objects in front of a neutral back-

ground using standard cameras. For evaluation, we took several photos from mul-

tiple directions, allowing us to perform Structure-from-Motion to retrieve camera

matrices. We captured the datasets SPHERE REAL, BUNNY and SHAPES (Fig. 6.8).

In both, the task is to learn to regress 3D position, orientation and light from an im-

age as summarised in the lower part of Tbl. 6.5.

Figure 6.8: Three CUBE and BUNNY samples from the real capture datasets. Features like
sensor noise, motion blur, geometric details and depth-of-field are not repro-
duced by our DR, while still the method can be trained.

To enable real world experimentation, we recreate physical versions of our syn-

thetic world setups. To enable object learning requires 3 steps, a) data acquisition,

b) cameras alignment, c) object and scene modelling (Fig. 6.9).

Data acquisition is performed using two standard Canon digital single lens re-

flex cameras fixed on tripods. We set the validation (novel-view) camera at an

∼90°angle from the training camera view. To create the validation dataset objects

are then placed at random within the scene and the scene is captured from each cam-

era. A training dataset is then created by randomly placing objects into the scene

and only capturing data from the training camera. We finally take an image from

each camera with no objects in the scene for scene background modelling.
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Figure 6.9: Real dataset acquisition pipeline. Images are first captured from either mobile
(BUNNY) or fixed (SPHERE REAL, SHAPES) cameras (a). Camera alignment
is calculated using SfM (b). Using reconstructed geometry and camera exterior
orientations we can quickly model the scene (c). Finally, we pass all the pa-
rameters into a DR for scene parameter learning (d). Note, camera alignment
is only used for validation and not during the training or online phase.

Camera alignment To get relative exterior orientations between the two cameras

we utilise a Structure-from-Motion (SfM) pipeline. Each camera is lifted from the

tripod and multiple images take from various viewpoints. We ensure we densely

cover the space between the two cameras. The images are input into the SfM soft-

ware which produces the exterior orientations of the cameras in a common (arbi-

trary) coordinate system. We further generate a dense point cloud using multi-view

stereo to aid object modelling. All SfM processing was performed in MetaShapes

v1.6.5 using default settings.

Object and scene modeling Each shape is modeled inside Blender software, based

on the dense point cloud. This produces mesh objects which we pass to the DR. By

doing so we ensure our mesh has the same scale as the scene.

We assume a flat ground plane and that objects are in a canonical position,

with the only rotation axis being about the objects up-axis. We further transform

the camera exterior orientations such that the reconstructed ground plane lies on the

XY plane. This is done manually as we have no ground control points to align the

bundle adjustment. If a real co-ordinate system is required, ground control points

could be placed into the scene avoiding the need for manual transformation (rotation
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and scaling) of the exterior orientations.

Once the camera alignment is complete, we can then create a ground plane

mesh which we texture with the image containing no objects for training and vali-

dation cameras respectively. To ensure the same view of the ground plane we model

the ground plane to the view frustum of the camera. This can be done by importing

the intrinsic matrix estimated from the SfM to a virtual camera. Camera exterior

and intrinsic properties are exported along with all mesh objects.

In scenarios where 3D CAD objects are available prior to data capture (e.g.,

industrial applications where parts are designed in CAD software before being man-

ufactured), the object modeling process is not required.

Bunny The BUNNY dataset demonstrates a more casual data capture method. A

single 3D-printed Stanford bunny is filmed from a moving mobile camera. Training

data is generated by extracting frames every n-frames where n = 10 in our case.

Camera alignment is then computed for a sequence of frames. The first frame in the

sequence is used as the input frame and the last frame is used as the novel view. As

the motion is continuous, we can get relative camera positions using SfM. Object

is then the same as for the REAL SPHERE and SHAPES datasets. In order to model

the scene, we require a background image, which contains no object. We found

Adobe Photoshop content-aware delete tool to quickly and effectively remove the

foreground object, leaving a clean background image which can be used to texture

the ground-plane mesh.

Methods The data available only allows studying NonCur in comparison to Our as

no supervision parameter values are known. To close the domain gap, we blur the

rendering and camera image by a 9×9-pixel Gaussian filter to help remove camera

noise.

Metric Sets of images of the test scene from multiple views of known relative pose

allow to test the reprojection task, as for synthetic data using DSSIM. The object

parameters remain unknown and cannot be compared to anything for the real exper-

iment. Consequently, results also cannot be reported as ratio relative to this super-

vision signal. Further, for the above-mentioned reasons (camera noise, MB, DoF),
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there is a domain gap between any of our novel-view images and the reference. To

approximately quantify what differences might be if that domain gap would not be

there, we additionally report the DSSIM error for the blurred version of both im-

ages. While the error can be quantified, the reader might get a better impression

from looking at the actual re-synthesized images in Fig. 6.10.

Figure 6.10: Results of our approach. Each row is a different world / task. Note how there
was no other supervision than sample images.

Findings We find that our method is able to recover sensible parameters when

trained on only real RGB images. Tbl. 6.8 quantifies this. We see that analysis-by-

synthesis training without curiosity (NonCur) results in a higher image error than

Our. This corresponds to qualitative results in Fig. 6.10.

6.5.3 LineMOD

This task entails regressing a 6-DOF pose of a known object in images (Hinter-

stoisser et al., 2012). Unfortunately, we do not have access to scenes without the

objects present to generate training data. As a result, to achieve the optimum L2
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Table 6.8: Results on real photos for different datasets (columns) for different methods
(rows). Image error is in DSSIM, not ratio, as no supervised baseline on photos
exist.

SPHERE REAL BUNNY SHAPES

Sharp Blur Sharp Blur Sharp Blur

NonCur 0.48 0.41 0.46 0.43 0.54 0.46
Our 0.33 0.25 0.36 0.31 0.37 0.29

Figure 6.11: Visualization of (top, green) ground truth boxes and (bottom, red) our net-
work predictions on LineMOD test data.

and critic loss our network could simply render the objects out of the cameras view.

To account for this, we take a similar approach to Su et al. (2021) whereby we gen-

erate synthetic images by rendering 3D models over 2D background images. We

first collect backgrounds by downloading 500 images returned by a Google search

Table 6.9: Results from LineMOD experiment. All results denote the ADD object recall
metric proposed by (Hinterstoisser et al., 2012). ’LblR’ and ’Lbl S’ indicates
whether real or synthetic pose or mask labels were used respectively. Note that
our approach and Sundermeyer et al. (2020) use neither.

Method LblR LblS Avg. Ape B.vise Cam Can Cat Drill Duck Eggb. Glue Pun. Iron Lamp Phone

Yolo6d [1] 3 7 56.0 21.6 81.8 36.6 68.8 41.8 63.5 27.2 69.6 80.0 42.6 75.0 71.1 47.7
Pix2Pose [2] 3 7 72.4 58.1 91.0 60.9 84.4 65.0 76.3 43.8 96.8 79.4 74.8 83.4 82.0 45.0
Kehl et al. [3] 3 7 92.9 98.1 94.8 93.4 82.6 98.1 96.5 97.9 100.0 74.1 97.9 91.0 98.2 84.9
EfficientPose [4] 3 7 97.4 87.7 99.7 97.9 98.5 98.0 99.9 91.0 100.0 100.0 95.2 99.7 100.0 98.0
Our (label) 3 7 78.2 71.5 93.4 70.2 71.8 76.3 73.8 65.4 90.5 71.5 86.2 81.4 86.2 78.5

Yolo6d [5] 7 3 21.4 16.1 33.9 2.9 21.0 27.1 24.7 20.2 2.3 15.0 15.4 57.6 26.8 14.8
Pix2Pose [6] 7 3 11.3 3.6 4.0 0.0 16.6 20.2 29.0 0.2 0.0 7.3 2.5 1.8 30.2 31.9
Kehl et al. [7] 7 3 2.4 0.0 0.2 0.4 1.4 0.5 2.6 0.0 8.9 0.0 0.3 8.9 8.2 0.2
SynPo-Net [8] 7 3 44.1 23.1 75.2 6.7 65.1 36.2 53.7 19.5 3.9 41.8 21.1 85.1 78.7 63.6
Implicit3d [9] 7 7 32.7 4.2 22.9 32.9 37.0 18.7 24.8 5.9 81.0 46.7 18.2 35.1 61.2 36.3
Our NonCur 7 7 1.6 2.6 1.5 0.4 0.9 1.1 1.5 0.0 5.2 1.5 3.2 0.0 0.0 2.3
Our 7 7 60.9 50.2 54.6 63.5 58.1 42.6 58.4 38.6 68.0 56.7 68.2 78.3 79.4 75.3

[1] (Tekin et al., 2018), [2] (Park et al., 2019b), [3] (Kehl et al., 2017), [4] (Bukschat, Vetter, 2020), [5] (Tekin et al., 2018),
[6] (Park et al., 2019b), [7] (Kehl et al., 2017), [8] (Su et al., 2021), [9] (Sundermeyer et al., 2020)
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of the term “clutter”. For each class we generate 10,000 training images where the

respective mesh has a random position and orientation and each scene a random

environment light. Unlike Su et al. (2021), we do not access synthetic labels during

training.

We use the same network architecture proposed in Sec. 6.3. However, our

scene code s ∈ R12 learns position p ∈ R3, rotation R ∈ R6 (as proposed by Zhou

et al. (2019b)) and environment light L ∈ R3. We use data loading scheduling to

train our model. First, we train only on synthetic images to learn to make predic-

tions in the camera view. We then incrementally add real training images (without

accessing labels).

Our method on average out-performs all methods in Tbl. 6.9 where either no

labels or synthetic labels are used. We perform competitively compared to super-

vised approaches, with a 20% reduction from ours supervised (the upper bound of

our detector). Qualitative results are shown in Fig. 6.11.

6.6 Conclusion and Future Work

We have demonstrated a pipeline combining DR and a curiosity term, that allows

to learn an explicit and interpretable 3D scene parameterization of a single image

from a set of unlabelled 2D images and a geometric representation of the objects we

wish to find. Different from other approaches, we are not limited to simple or single

objects and can represent global properties such as light. Direct optimisation under a

L2-like loss function leads to many ambiguities, that can be overcome by what looks

like a GAN-like critic at first but serves an entirely different purpose: preventing

the network from following always the same easy-reward gradients that lead to

unusable minima. With this simple addition we show a relatively basic network,

without labels, can perform competitively with a fully supervised counterpart.

A limitation to our approach is the requirement of a geometric representation.

In future work we propose such a template, if represented as a parameterisable

model, such as a deep Signed Distance Function (SDF) (Park et al., 2019a) from

a strong prior, can be included in the scene code and learnt during training. Beker
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et al. (2020) demonstrate such an approach to be effective.



Chapter 7

Discussion

In this chapter we present a general discussion on the work covered from Chapters 3

- 6. The purpose of this chapter is to reflect on the work presented in this thesis from

a holistic point of view. The limitations section (Sec. 7.1) aims to address specific

issues with each method presented. The chapter is concluded with a discussion on

future works where the author personally believes further research will likely yield

significant progress in the field.

7.1 Limitations

7.1.1 Existing data

The utilisation of national mapping data in Chapter 3 was shown to be highly effec-

tive for building segmentation. Furthermore, it was shown the effectiveness could

be increased by introducing a novel energy-based label refinement algorithm. De-

spite this, several key limitations are still present in the methodology.

Most prominently is the class restriction imposed by using existing data.

Buildings unfortunately represent one of the few accurately mapped national scale

classes. Another reasonable class we could have exploited existing labels for would

be roads, as well as general land classification. However, outside of these classes

this method would not be possible. Fortunately, there is a direct correlation be-

tween national-scale features which we want to map, and those which have been

mapped. This is the reason they were mapped in the first place. However, this is

not an extensive list. For example, street furniture and points of interest are only
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sparsely mapped, despite there being a demand for their precise mapped locations

nationally.

Whilst in the method 3D LiDAR points were classified, there is a strong as-

sumption that the scene topology is approximately 2D with respect to the camera

view-point. This allows the use of 2D mapping labels. The 3D data was utilised by

projecting the data onto a regular 2D grid which is aligned with the 2D RGB image

grid. These assumptions limit the methodology from being useful in the generic

3D setting. For example, indoor scene understanding would require full 3D labels,

which do not exist on a large-scale. So, whilst we make progress for a specific task

where 3D data is present, this method does not offer a strong research direction for

the more generic tasks set out in Chapter 1.

7.1.2 Synthetic

In Chapter 4 we generate a synthetic point cloud we dub SynthCity. The method-

ology outlined proved successful in easily adapting an artist generated 3D scene to

a 3D scene understanding dataset. Despite looking qualitatively reasonable, regret-

tably we found relatively little useful application of our dataset for real-world tasks.

We hypothesised multiple reasons for this, however, most likely either SynthCity

was too small, or the real-world test set was too similar to the real-world train set,

ultimately rewarding the network for over-fitting.

Another larger limitation of using synthetic data for training real-world mod-

els is the requirement for the digital 3D world models. Similar to the limitations

discussed in Sec. 7.1.1, such scenes are only available for a subset of environments.

For example, whereas inner cities are frequently modelled, rural areas as well as

specialist areas (e.g., railways, tunnels, mines etc.) are not. As a result, the scope

of using synthetic data is ultimately limited. Despite this, one potential applica-

tion could be to use large existing synthetic datasets to pre-train large 3D network

backbones which can then be fine-tuned on more domain specific environments.

This has shown success in the 2D domain (Huh et al., 2016; He et al., 2019) and

more recently Zhang et al. (2021c); Xie et al. (2020) have shown promise in the 3D

domain.
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Using synthetic data, like existing data, is still a fully-supervised approach to

3D scene understanding. Whilst the labelling effort for training machine learning

models is reduced, the labels are still manually created, just not by the machine

learning practitioner. Scaling synthetic scenes to perform the wide range of tasks

covered by 3D scene understanding would ultimately require digitally modelling

the environments first. This offers no immediate benefit to typical manual labelling

for supervised learning tasks. Instead, it simply shifts the labelling to another task.

Moreover, by shifting the labelling to synthetic, a domain-gap is introduced which

is shown in Chapter 4 to be damaging for performance. This is in line with other

research findings e.g., Wu et al. (2018).

7.1.3 Weakly-supervised

In Chapter 5 a weakly-supervised approach for 3D scene understanding is proposed

through a novel learnt loss function. Unlike Sec. 7.1.1 and 7.1.2, the reduction of

labels does not come at the cost of requiring alternative labels. Instead, the network

becomes more label efficient. The key limitation here is still the requirement for

3D labels. Whilst we show that with up to a 95% reduction of labels, strong results

can be obtained, labelling 5% of the dataset is still time consuming and undesirable.

For example, loading and navigating large point cloud data can be very cumbersome

even on modern day computers, especially when the size of the point cloud is larger

than the available Random Access Memory of the machine.

It is also important that the 5% of labels cover the distribution well of the 95%

of missing labels. For example, if only armchairs are labelled, it is not clear how

well the method would perform at detecting office chairs. This therefore requires

a further form of supervision to ensure the labels cover all strong variations of in-

stances present in the dataset. The trained loss network also defines the domain in

which the scene network can operate. Although we still achieve good results across

datasets, the datasets are still reasonably similar (both indoor typical U.S. university

environments). As the domain of the scene dataset drifts from the domain used to

train loss network the performance would start to degrade. This requires the user to

be aware of the input stream of scene data and understand its similarity with respect
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to the labels used for training the loss network.

7.1.4 Self-supervised

The key advantage of the self-supervised learning approach presented in Chapter 6

is that no scene labels are required at any point in the learning pipeline. This allevi-

ates the problems discussed above in Sec. 7.1.3 whereby a domain gap is introduced

between the labelled data and unlabelled data. This is particularly useful for con-

tinuous learning where the model is retrained with new data which can potentially

drift from the initial data distribution. However, in doing this there was a trade-off

with the addition of a new constraints.

The method requires a geometric representation (mesh, in this case) of fore-

ground objects in the scene. This introduces two main constraints. Firstly, a 3D ge-

ometric representation needs to be either available or acquired. This can be achieved

using classic modelling techniques; however, the difficulty of the task increases as

the geometry being modelled becomes more complex. Secondly, we assume that

the there is no geometric variation of the objects in the scene. Whilst this is a rea-

sonable assumption for many standardised components (e.g., in an engineering en-

vironment), it is not the case for many real-world applications such as city mapping.

For example, whilst lampposts are geometrically similar (tall poll-like structures),

there is an inevitable variation at a city level. Our method would require an example

of each lamppost type as opposed to one example per-class.

Future work to address this could include fitting parametric mesh models as

common in human pose estimation (Bogo et al., 2016; Kolotouros et al., 2019) or

by learning implicit differentiable representations (e.g., Signed Distance Functions

(Park et al., 2019a) or Neural Radiance Fields (Mildenhall et al., 2020)). In these

scenarios, the network would not only predict the object class and spatial location,

but also the per-class model parameters/weights to ensure a good fit. Further exper-

imentation would be required to validate this approach.
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7.2 Summary

Each of the methods presented in this thesis have drawbacks, discussed in Sec. 7.1.

Despite this, the arguments put forward tend toward weakly and self-supervised ap-

proaches being more favourable. The primary reason for this is that whilst existing

and synthetic data can inevitably be useful, they are constricted to the specific do-

mains in which they were originally created. The goal of this thesis was to evaluate

the most effective label efficient approaches toward the goal of general 3D scene

understanding. Whilst synthetic data has no fundamental limitation, creating the

digital models to generate the supervision data is not obviously less effort or more

efficient than standard per-object spatial labelling. Furthermore, the introduction of

the domain-gap is shown to be problematic and therefore currently unfavourable.

The weakly-supervised approach proposed in Chapter 5 was the most suitable

approach for real-world 3D scene understanding tasks. Through experimentation

we show that this approach achieves impressive results on established real-world

benchmark datasets (ScanNet and S3DIS). The self-supervised approach proposed

in Chapter 6, while achieving impressive results on synthetic and simple scenes, has

no obvious immediate logical steps of improvements which would allow the method

to compete with the weakly-supervised approach on a real-world benchmark. We

do, however, show that the introduction of a GAN-like loss function can have ap-

plication in 3D object detection. The idea, albeit a simple one, could have a wide

range of application in future network designs.

7.3 Future works

In this thesis we followed what is arguably the “mainstream” in modern 3D point

cloud deep learning architectures. The feature encoder backbones were all built

on variants of PointNet++ (Qi et al., 2017b). Such networks achieve hierarchical

feature pooling through a Euclidean-based inductive bias. Whilst this approach has

undoubtedly been responsible for the impressive performance of 3D vision tasks

since their inception, recent trends are beginning to deviate from such architectures.

In this section we will look at two architecture designs which present exiting future
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research prospects.

7.3.1 Transformers

Introduced in the seminal paper by Vaswani et al. (2017), transformers have been

responsible for large advances in the field of natural language processing. Large

transformer-based models such as BERT (Devlin et al., 2018), Megatron-LM

(Shoeybi et al., 2019) and GPT-3 (Brown et al., 2020) have redefined what is pos-

sible for sequence-to-sequence tasks. At the core of the transformer is an attention

mechanism (Bahdanau et al., 2014; Parikh et al., 2016; Kim et al., 2017). Crucial to

the work of Vaswani et al. (2017) was the idea that a model built entirely of atten-

tion modules performs better than traditional recurrent neural network architectures.

Intuitively, attention allows the network to learn a per-feature weighting which is

used to perform a weighted aggregation of the set’s features. The network can learn

to increase the weighting of more important features whilst simultaneously down

weighting less important features. For example, certain words in a sentence (e.g.,

happy, elated, angry) are more salient in understanding the sentiment of a sentence

than others (e.g., and, the, or).

More recently, transformers have shown to be effective for 2D computer vi-

sion tasks. Dosovitskiy et al. (2020) show that by splitting an image into a 16×16

grid a transformer can be used for the image classification. Intuitively, the authors

argue that different patches are more salient for determining the main classification

of an image than others. This is particularly true when some patches contain only

background pixels. Since their inception Vision Transformers (ViT) have been used

for a range of tasks including classification (Dosovitskiy et al., 2020), object detec-

tion (Carion et al., 2020), semantic segmentation (Strudel et al., 2021) and image

synthesis (Liu et al., 2020).

Concurrently to 2D research, 3D researchers have also evaluated the potential

for attention modules and transformer models for processing 3D data, specifically,

point clouds. One of the early successful integrations of attention modules in a

modern 3D neural network was proposed by Hu et al. (2020) in their RandLA-Net

model. RandLA-Net showed by the inclusion of attention modules, point sam-
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pling for down sampling become much less important. Whereas most modern net-

works use either grid-based sampling (Thomas et al., 2019), farthest point sam-

pling (Qi et al., 2017b) or poisson disk sampling (Hermosilla et al., 2018), RandLa-

Net achieve comparable performance using a simple random sampling. This was

made possible as the network could easily learn which salient point features to keep

through a 3D attention module.

There are several characteristics to make point clouds and transformers poten-

tially very compatible. Firstly, transformers are by design permutation invariant.

The absolute ordering of words in the sentence, like points in a point cloud is not

necessarily important. Transformers are also invariant to the cardinality of the set.

This is very favourable as point clouds captured from real-world sensors have vary-

ing local density and cardinality. Additionally, like words in a sentence, certain

points are more salient than others (e.g., corner, skeleton points). Finally, a key

component for transformer is a position embedding. This allows the network to

learn relative positioning of words. The authors of Vaswani et al. (2017) propose

to use sine and cosine functions. However, point clouds already live in a meaning-

ful metric space, as such the positional encoding can simply be the 3D positions

of the points (Hu et al., 2020; Zhao et al., 2021). The recent Point Transformer

(Zhao et al., 2021) adopts this approach and has achieved state-of-the-art accuracy

on model classification and per-point classification tasks.

7.3.2 Mesh-based networks

In this thesis we mostly focus on point cloud as a 3D representation. However, as

discussed in Sec. 1.3, this is not the only representation. Another common represen-

tation is triangular meshes. Different to point clouds, meshes include connectivity

(edges) information between points (vertices). Typical point cloud processing net-

works pool features using either K-Nearest Neighbour or radius ball searches. That

is, given a seed point, the features of the K-Nearest neighbour points, or points less

than some defined distance are pooled together. In both approaches the Euclidean

distance in metric space is used. This is usually undesirable when two surfaces of

different objects are close to each other. For example, points of a chair leg and a
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table leg may be very close in terms of Euclidean distance. The key advantage of

having a known connectivity is that instead of using a Euclidean neighbourhood, a

Geodesic neighbourhood can be used. This ensures all features are pooled from the

same surface.

A key challenge in utilising meshes for hierarchical learning methods such as

CNNs is a formulation of how to pool features. An example of one approach is

proposed by Hanocka et al. (2019), in their MeshCNN network. MeshCNN learns

an edge collapsing technique which can collapse less important edges, effectively

retaining and expanding important edges. Schult et al. (2020) using graph based

convolutions and pooling extend mesh-based methods to achieve competitive per-

formance on a real-world (ScanNet) benchmark. Specific to this method is the use

of both Euclidean and Geodesic pooling which is shown to be effective. A disad-

vantage is the increased memory footprint introduced by storing both vertices and

edges 1 and the increased computation footprint for expensive edge collapsing op-

erations. We argue future work in this area could yield performance increases by

exploiting this additional information.

1On the contrary, meshes are non-uniform representations and in certain scenarios can be more
efficient. Simple surfaces can be represented with very few vertices and edges. For example, a
ground plane is represented with 4 vertices and 4 edges irrespective of how large the plane is. How-
ever, for meshes constructed from real-world sensors this this cannot be exploited without first pre-
processing the data was a mesh simplification algorithm, potentially loosing information.
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Conclusions

In this thesis we have addressed four strategies to reduce the labelling requirement

of training deep neural networks for 3D related tasks. In Chapter 1 we introduced

the general problem of 3D scene understanding and discussed challenges associated

with processing 3D point cloud data. We outline 3D specific challenges which has

caused progress in 3D computer vision to trail 2D computer vision. We highlight

the representation challenges and discuss their trade-offs.

In Chapter 3 we evaluate a method which avoids the requirements of manual

labelling by utilising existing mapping data, available from national mapping agen-

cies. We demonstrate why the course nature of the labels cause performance issues

when training neural networks. We propose to use energy minimising active con-

tour snakes on co-registered LiDAR data to refine labels to fit buildings. Here, the

mapping data only offers a single seed point for the region growing snakes which

expand out to fit to the edges of the buildings. Our experimentation shows by im-

proving label quality overall performance is increased leading to state-of-the-art

results on the challenging ISPRS Potsdam building segmentation benchmark.

Chapter 4 also utilised existing data, but in the form of artist created synthetic

digital world models. We demonstrate the ability to utilise open-source virtual Li-

DAR software to generate a Mobile Laser Scanner (MLS) dataset we dub SynthCity.

We run evaluations to determine the effects of pre-training 3D neural networks with

synthetic data to improve test performance on real data. We conclude from our

studies that whilst the dataset appeared qualitatively feasible, no performance gains
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were made with respect to real-world test metrics. This is likely due to either Syn-

thCity being too small or the train and test sets being too similar on the real-world

data, effectively rewarding the network for over-fitting. In future work we propose

to increase the size of the SynthCity by utilising larger world models such as those

found in video games (Wu et al., 2018, 2019), or driving simulators (Dosovitskiy

et al., 2017).

In Chapter 5 we propose a weakly-supervised learning approach. Our method

introduces the novel concept of learning the loss function from a smaller subset

of labels. Once our loss function is learnt we use it to train a 3D object detector

from unlabelled data. The key insight from our method is that the loss function is

only required to learn a more simple and local problem which can be trained using

significantly less data. We experimentally achieve competitive performance to other

works using 95% less training data. Our approach was shown to also work well

when the loss function and object detector were trained on different datasets. This

approach opens the potential for training on enormous datasets where the domain-

shift is not expected to be high.

Chapter 6 proposes a method to further reduce the required labels to only a

single instance of each class, represented by a geometric model (polygonal mesh).

A 3D monocular object detector is built which achieves impressive performance on

synthetic and real scenes without any scene-level labels. We discuss why standard

L2-like losses are not useful when optimising using a differentiable rendering. In

light of this we propose to use a Generative Adversarial Network (GAN)-like loss

function to avoid local-minima which the L2-like loss almost certainly falls into.

The method shows the potential of using GAN-like losses for 3D object detection,

whereas traditionally it is reserved for image synthesis tasks.

We summarise all of our findings and discuss limitations in Chapter 7. We

conclude that in specific situations each method can have benefits over the others.

However, from the experiments presented in this thesis, our weakly-supervised ap-

proach was the most effective at moving towards the goal of highly label-efficient

3D scene understanding. Although for maximum label efficiency self-supervised
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approaches would be more favourable, currently they are not as flexible or scalable

as the weakly-supervised method proposed.
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Gautama Sidharta, others . Hyperspectral and LiDAR data fusion: Outcome

of the 2013 GRSS data fusion contest // IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing. 2014. 7, 6. 2405–2418.

Deng Jia, Dong Wei, Socher Richard, Li Li-Jia, Li Kai, Fei-Fei Li. Imagenet: A

large-scale hierarchical image database // 2009 IEEE conference on computer

vision and pattern recognition. 2009. 248–255.



BIBLIOGRAPHY 132

Deschaud Jean-Emmanuel. KITTI-CARLA: a KITTI-like dataset generated by

CARLA Simulator // arXiv preprint arXiv:2109.00892. 2021.

Devaranjan Jeevan, Kar Amlan, Fidler Sanja. Meta-sim2: Unsupervised learn-

ing of scene structure for synthetic data generation // European Conference on

Computer Vision. 2020. 715–733.

Devlin Jacob, Chang Ming-Wei, Lee Kenton, Toutanova Kristina. Bert: Pre-training

of deep bidirectional transformers for language understanding // arXiv preprint

arXiv:1810.04805. 2018.

Dollar Piotr, Tu Zhuowen, Belongie Serge. Supervised learning of edges and object

boundaries // 2006 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’06). 2. 2006. 1964–1971.

Dosovitskiy Alexey, Beyer Lucas, Kolesnikov Alexander, Weissenborn Dirk, Zhai

Xiaohua, Unterthiner Thomas, Dehghani Mostafa, Minderer Matthias, Heigold

Georg, Gelly Sylvain, others . An image is worth 16x16 words: Transformers for

image recognition at scale // arXiv preprint arXiv:2010.11929. 2020.

Dosovitskiy Alexey, Ros German, Codevilla Felipe, Lopez Antonio, Koltun Vladlen.

CARLA: An open urban driving simulator // Conference on robot learning. 2017.

1–16.

Du Shihong, Zhang Fangli, Zhang Xiuyuan. Semantic classification of urban build-

ings combining VHR image and GIS data: An improved random forest approach

// ISPRS journal of photogrammetry and remote sensing. 2015. 105. 107–119.

Duan Kaiwen, Bai Song, Xie Lingxi, Qi Honggang, Huang Qingming, Tian Qi.

Centernet: Keypoint triplets for object detection // Proceedings of the IEEE/CVF

International Conference on Computer Vision. 2019. 6569–6578.

Edelsbrunner Herbert, Kirkpatrick David, Seidel Raimund. On the shape of a set

of points in the plane // IEEE Transactions on information theory. 1983. 29, 4.

551–559.



BIBLIOGRAPHY 133

Elberink Sander Oude, Vosselman George. Building reconstruction by target based

graph matching on incomplete laser data: Analysis and limitations // Sensors.

2009. 9, 8. 6101–6118.

Engelcke Martin, Rao Dushyant, Wang Dominic Zeng, Tong Chi Hay, Posner Ing-

mar. Vote3deep: Fast object detection in 3d point clouds using efficient convo-

lutional neural networks // 2017 IEEE International Conference on Robotics and

Automation (ICRA). 2017. 1355–1361.

Everingham Mark, Van Gool Luc, Williams Christopher KI, Winn John, Zisserman

Andrew. The pascal visual object classes (voc) challenge // International journal

of computer vision. 2010. 88, 2. 303–338.

Fang Jin, Zhou Dingfu, Yan Feilong, Zhao Tongtong, Zhang Feihu, Ma Yu, Wang

Liang, Yang Ruigang. Augmented LiDAR simulator for autonomous driving //

IEEE Robotics and Automation Letters. 2020. 5, 2. 1931–1938.

Faugeras Olivier D, Hebert Martial. The representation, recognition, and locating

of 3-D objects // The international journal of robotics research. 1986. 5, 3. 27–52.

Geiger Andreas, Lenz Philip, Stiller Christoph, Urtasun Raquel. Vision meets

robotics: The kitti dataset // The International Journal of Robotics Research.

2013. 32, 11. 1231–1237.

Genova Kyle, Yin Xiaoqi, Kundu Abhijit, Pantofaru Caroline, Cole Forrester, Sud

Avneesh, Brewington Brian, Shucker Brian, Funkhouser Thomas. Learning

3D Semantic Segmentation with only 2D Image Supervision // arXiv preprint

arXiv:2110.11325. 2021.

Geyer Jakob, Kassahun Yohannes, Mahmudi Mentar, Ricou Xavier, Durgesh Ru-

pesh, Chung Andrew S, Hauswald Lorenz, Pham Viet Hoang, Mühlegg Maximil-

ian, Dorn Sebastian, others . A2D2: Audi autonomous driving dataset // arXiv

preprint arXiv:2004.06320. 2020.



BIBLIOGRAPHY 134

Girshick Ross. Fast r-cnn // Proceedings of the IEEE international conference on

computer vision. 2015. 1440–1448.

Girshick Ross, Donahue Jeff, Darrell Trevor, Malik Jitendra. Rich Feature Hier-

archies for Accurate Object Detection and Semantic Segmentation // CVPR. VI

2014. 580–587.

Glorot Xavier, Bengio Yoshua. Understanding the difficulty of training deep feed-

forward neural networks // Proceedings of the thirteenth international conference

on artificial intelligence and statistics. 2010. 249–256.

Golovinskiy Aleksey, Kim Vladimir G, Funkhouser Thomas. Shape-based recogni-

tion of 3D point clouds in urban environments // 2009 IEEE 12th International

Conference on Computer Vision. 2009. 2154–2161.
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