24,681 research outputs found

    Harnessing Technology: new modes of technology-enhanced learning: action research, March 2009

    Get PDF
    5 action research studie

    Personalised Learning: Developing a Vygotskian Framework for E-learning

    Get PDF
    Personalisation has emerged as a central feature of recent educational strategies in the UK and abroad. At the heart of this is a vision to empower learners to take more ownership of their learning and develop autonomy. While the introduction of digital technologies is not enough to effect this change, embedding the affordances of new technologies is expected to offer new routes for creating personalised learning environments. The approach is not unique to education, with consumer technologies offering a 'personalised' relationship which is both engaging and dynamic, however the challenge remains for learning providers to capture and transpose this to educational contexts. As learners begin to utilise a range of tools to pursue communicative and collaborative actions, the first part of this paper will use analysis of activity logs to uncover interesting trends for maturing e-learning platforms across over 100 UK learning providers. While personalisation appeals to marketing theories this paper will argue that if learning is to become personalised one must ask what the optimal instruction for any particular learner is? For Vygotsky this is based in the zone of proximal development, a way of understanding the causal-dynamics of development that allow appropriate pedagogical interventions. The second part of this paper will interpret personalised learning as the organising principle for a sense-making framework for e-learning. In this approach personalised learning provides the context for assessing the capabilities of e-learning using Vygotsky’s zone of proximal development as the framework for assessing learner potential and development

    Science in the New Zealand Curriculum e-in-science

    Get PDF
    This milestone report explores some innovative possibilities for e-in-science practice to enhance teacher capability and increase student engagement and achievement. In particular, this report gives insights into how e-learning might be harnessed to help create a future-oriented science education programme. “Innovative” practices are considered to be those that integrate (or could integrate) digital technologies in science education in ways that are not yet commonplace. “Future-oriented education” refers to the type of education that students in the “knowledge age” are going to need. While it is not yet clear exactly what this type of education might look like, it is clear that it will be different from the current system. One framework used to differentiate between these kinds of education is the evolution of education from Education 1.0 to Education 2.0 and 3.0 (Keats & Schmidt, 2007). Education 1.0, like Web 1.0, is considered to be largely a one-way process. Students “get” knowledge from their teachers or other information sources. Education 2.0, as defined by Keats and Schmidt, happens when Web 2.0 technologies are used to enhance traditional approaches to education. New interactive media, such as blogs, social bookmarking, etc. are used, but the process of education itself does not differ significantly from Education 1.0. Education 3.0, by contrast, is characterised by rich, cross-institutional, cross-cultural educational opportunities. The learners themselves play a key role as creators of knowledge artefacts, and distinctions between artefacts, people and processes become blurred, as do distinctions of space and time. Across these three “generations”, the teacher’s role changes from one of knowledge source (Education 1.0) to guide and knowledge source (Education 2.0) to orchestrator of collaborative knowledge creation (Education 3.0). The nature of the learner’s participation in the learning also changes from being largely passive to becoming increasingly active: the learner co-creates resources and opportunities and has a strong sense of ownership of his or her own education. In addition, the participation by communities outside the traditional education system increases. Building from this framework, we offer our own “framework for future-oriented science education” (see Figure 1). In this framework, we present two continua: one reflects the nature of student participation (from minimal to transformative) and the other reflects the nature of community participation (also from minimal to transformative). Both continua stretch from minimal to transformative participation. Minimal participation reflects little or no input by the student/community into the direction of the learning—what is learned, how it is learned and how what is learned will be assessed. Transformative participation, in contrast, represents education where the student or community drives the direction of the learning, including making decisions about content, learning approaches and assessment

    Lessons from the future: ICT scenarios and the education of teachers

    Get PDF
    This paper reviews significant events of the last 25 years in schools and teacher education in England and looks ahead to the next 25 years. Various scenarios for the future are examined and the potential is considered for new forms of teachers' initial education and continuing professional development using information and communications technology. It is concluded that the current centrally-controlled national system is increasingly inappropriate to present needs and will fracture under the combination of pressures of a commodified education market, learners' consumerist expectations of personalised provision, and networks of informal learning enabled by widespread access to portable communications technology. Four lessons from this future prediction are drawn, with recommendations for radical changes in government policy and orientation. © 2005 Taylor & Francis

    Virtual learning environments: an evaluation of their development in a sample of educational settings

    Get PDF
    • 

    corecore