15 research outputs found

    Word problems recognisable by deterministic blind monoid automata

    Get PDF
    We consider blind, deterministic, finite automata equipped with a register which stores an element of a given monoid, and which is modified by right multiplication by monoid elements. We show that, for monoids M drawn from a large class including groups, such an automaton accepts the word problem of a group H if and only if H has a finite index subgroup which embeds in the group of units of M. In the case that M is a group, this answers a question of Elston and Ostheimer.Comment: 8 pages, fixed some typos and clarified ambiguity in the abstract, results unchange

    The word problem distinguishes counter languages

    Full text link
    Counter automata are more powerful versions of finite-state automata where addition and subtraction operations are permitted on a set of n integer registers, called counters. We show that the word problem of Zn\Z^n is accepted by a nondeterministic mm-counter automaton if and only if mnm \geq n.Comment: 8 page

    Author index

    Get PDF

    On groups and counter automata

    Full text link
    We study finitely generated groups whose word problems are accepted by counter automata. We show that a group has word problem accepted by a blind n-counter automaton in the sense of Greibach if and only if it is virtually free abelian of rank n; this result, which answers a question of Gilman, is in a very precise sense an abelian analogue of the Muller-Schupp theorem. More generally, if G is a virtually abelian group then every group with word problem recognised by a G-automaton is virtually abelian with growth class bounded above by the growth class of G. We consider also other types of counter automata.Comment: 18 page

    Generalized Results on Monoids as Memory

    Full text link
    We show that some results from the theory of group automata and monoid automata still hold for more general classes of monoids and models. Extending previous work for finite automata over commutative groups, we demonstrate a context-free language that can not be recognized by any rational monoid automaton over a finitely generated permutable monoid. We show that the class of languages recognized by rational monoid automata over finitely generated completely simple or completely 0-simple permutable monoids is a semi-linear full trio. Furthermore, we investigate valence pushdown automata, and prove that they are only as powerful as (finite) valence automata. We observe that certain results proven for monoid automata can be easily lifted to the case of context-free valence grammars.Comment: In Proceedings AFL 2017, arXiv:1708.0622
    corecore