16,381 research outputs found

    Deep word embeddings for visual speech recognition

    Get PDF
    In this paper we present a deep learning architecture for extracting word embeddings for visual speech recognition. The embeddings summarize the information of the mouth region that is relevant to the problem of word recognition, while suppressing other types of variability such as speaker, pose and illumination. The system is comprised of a spatiotemporal convolutional layer, a Residual Network and bidirectional LSTMs and is trained on the Lipreading in-the-wild database. We first show that the proposed architecture goes beyond state-of-the-art on closed-set word identification, by attaining 11.92% error rate on a vocabulary of 500 words. We then examine the capacity of the embeddings in modelling words unseen during training. We deploy Probabilistic Linear Discriminant Analysis (PLDA) to model the embeddings and perform low-shot learning experiments on words unseen during training. The experiments demonstrate that word-level visual speech recognition is feasible even in cases where the target words are not included in the training set

    Do Multi-Sense Embeddings Improve Natural Language Understanding?

    Full text link
    Learning a distinct representation for each sense of an ambiguous word could lead to more powerful and fine-grained models of vector-space representations. Yet while `multi-sense' methods have been proposed and tested on artificial word-similarity tasks, we don't know if they improve real natural language understanding tasks. In this paper we introduce a multi-sense embedding model based on Chinese Restaurant Processes that achieves state of the art performance on matching human word similarity judgments, and propose a pipelined architecture for incorporating multi-sense embeddings into language understanding. We then test the performance of our model on part-of-speech tagging, named entity recognition, sentiment analysis, semantic relation identification and semantic relatedness, controlling for embedding dimensionality. We find that multi-sense embeddings do improve performance on some tasks (part-of-speech tagging, semantic relation identification, semantic relatedness) but not on others (named entity recognition, various forms of sentiment analysis). We discuss how these differences may be caused by the different role of word sense information in each of the tasks. The results highlight the importance of testing embedding models in real applications

    Speaker Diarization with Lexical Information

    Full text link
    This work presents a novel approach for speaker diarization to leverage lexical information provided by automatic speech recognition. We propose a speaker diarization system that can incorporate word-level speaker turn probabilities with speaker embeddings into a speaker clustering process to improve the overall diarization accuracy. To integrate lexical and acoustic information in a comprehensive way during clustering, we introduce an adjacency matrix integration for spectral clustering. Since words and word boundary information for word-level speaker turn probability estimation are provided by a speech recognition system, our proposed method works without any human intervention for manual transcriptions. We show that the proposed method improves diarization performance on various evaluation datasets compared to the baseline diarization system using acoustic information only in speaker embeddings

    Named Entity Recognition in Spanish Biomedical Literature: Short Review and Bert Model

    Get PDF
    Named Entity Recognition (NER) is the rst step for knowledge acquisition when we deal with an unknown corpus of texts. Having received these entities, we have an opportunity to form parameters space and to solve problems of text mining as concept normalization, speech recognition, etc. The recent advances in NER are related to the technology of word embeddings, which transforms text to the form being effective for Deep Learning. In the paper, we show how NER detects pharmacological substances, compounds, and proteins in the dataset obtained from the Spanish Clinical Case Corpus (SPACCC). To achieve this goal, we use contextualized word embeddings based on BERT language representation, which shows better results than the standard word embeddings
    corecore