45,846 research outputs found

    Symmetry witnesses

    Full text link
    A symmetry witness is a suitable subset of the space of selfadjoint trace class operators that allows one to determine whether a linear map is a symmetry transformation, in the sense of Wigner. More precisely, such a set is invariant with respect to an injective densely defined linear operator in the Banach space of selfadjoint trace class operators (if and) only if this operator is a symmetry transformation. According to a linear version of Wigner's theorem, the set of pure states, the rank-one projections, is a symmetry witness. We show that an analogous result holds for the set of projections with a fixed rank (with some mild constraint on this rank, in the finite-dimensional case). It turns out that this result provides a complete classification of the set of projections with a fixed rank that are symmetry witnesses. These particular symmetry witnesses are projectable; i.e., reasoning in terms of quantum states, the sets of uniform density operators of corresponding fixed rank are symmetry witnesses too.Comment: 15 page

    Symmetry witnesses

    Full text link
    A symmetry witness is a suitable subset of the space of selfadjoint trace class operators that allows one to determine whether a linear map is a symmetry transformation, in the sense of Wigner. More precisely, such a set is invariant with respect to an injective densely defined linear operator in the Banach space of selfadjoint trace class operators (if and) only if this operator is a symmetry transformation. According to a linear version of Wigner's theorem, the set of pure states, the rank-one projections, is a symmetry witness. We show that an analogous result holds for the set of projections with a fixed rank (with some mild constraint on this rank, in the finite-dimensional case). It turns out that this result provides a complete classification of the set of projections with a fixed rank that are symmetry witnesses. These particular symmetry witnesses are projectable; i.e., reasoning in terms of quantum states, the sets of uniform density operators of corresponding fixed rank are symmetry witnesses too.Comment: 15 page

    Hierarchical hyperbolicity of graphs of multicurves

    Full text link
    We show that many graphs naturally associated to a connected, compact, orientable surface are hierarchically hyperbolic spaces in the sense of Behrstock, Hagen and Sisto. They also automatically have the coarse median property defined by Bowditch. Consequences for such graphs include a distance formula analogous to Masur and Minsky's distance formula for the mapping class group, an upper bound on the maximal dimension of quasiflats, and the existence of a quadratic isoperimetric inequality. The hierarchically hyperbolic structure also gives rise to a simple criterion for when such graphs are Gromov hyperbolic.Comment: 27 pages, 4 figures. Minor changes from previous version. Addition of appendix describing a hierarchically hyperbolic structure on the arc grap

    Partially Punctual Metric Temporal Logic is Decidable

    Full text link
    Metric Temporal Logic \mathsf{MTL}[\until_I,\since_I] is one of the most studied real time logics. It exhibits considerable diversity in expressiveness and decidability properties based on the permitted set of modalities and the nature of time interval constraints II. Henzinger et al., in their seminal paper showed that the non-punctual fragment of MTL\mathsf{MTL} called MITL\mathsf{MITL} is decidable. In this paper, we sharpen this decidability result by showing that the partially punctual fragment of MTL\mathsf{MTL} (denoted PMTL\mathsf{PMTL}) is decidable over strictly monotonic finite point wise time. In this fragment, we allow either punctual future modalities, or punctual past modalities, but never both together. We give two satisfiability preserving reductions from PMTL\mathsf{PMTL} to the decidable logic \mathsf{MTL}[\until_I]. The first reduction uses simple projections, while the second reduction uses a novel technique of temporal projections with oversampling. We study the trade-off between the two reductions: while the second reduction allows the introduction of extra action points in the underlying model, the equisatisfiable \mathsf{MTL}[\until_I] formula obtained is exponentially succinct than the one obtained via the first reduction, where no oversampling of the underlying model is needed. We also show that PMTL\mathsf{PMTL} is strictly more expressive than the fragments \mathsf{MTL}[\until_I,\since] and \mathsf{MTL}[\until,\since_I]

    Tensor decomposition and homotopy continuation

    Get PDF
    A computationally challenging classical elimination theory problem is to compute polynomials which vanish on the set of tensors of a given rank. By moving away from computing polynomials via elimination theory to computing pseudowitness sets via numerical elimination theory, we develop computational methods for computing ranks and border ranks of tensors along with decompositions. More generally, we present our approach using joins of any collection of irreducible and nondegenerate projective varieties X1,…,Xk⊂PNX_1,\ldots,X_k\subset\mathbb{P}^N defined over C\mathbb{C}. After computing ranks over C\mathbb{C}, we also explore computing real ranks. Various examples are included to demonstrate this numerical algebraic geometric approach.Comment: We have added two examples: A Coppersmith-Winograd tensor, Matrix multiplication with zeros. (26 pages, 1 figure
    • …
    corecore