14,061 research outputs found

    Segmentation and Determination of Brain Tumor by Bounding Box Method

    Get PDF
    An Intracranial Neoplasm (Brain Tumor) occurs when abnormal cells form within the brain. There are two main types of tumors: Malignant (Cancerous Tumors) and Benign tumors. Cancerous or non-cancerous mass and growth of abnormal cells in the brain leads to the formation of brain tumor. In order to reduce the increasing fatality rate caused by brain tumor, it is necessary to detect and cure the affected region early and efficiently. Initially, pre-processing is performed, in this phase image is enhanced in the way that finer details are improved and noise is removed from the image. During pre-processing, filters are applied on an input grey scale image to remove unwanted impurities. Filtered image thus obtained is free from impurities. Processing of an image is performed next. Image segmentation is based on the division of the image into regions. Division is done on the basis of similar attributes. Post processing is done using threshold and watershed segmentation. During post processing, the filtered image is forwarded for threshold segmentation along with SVM classifier. Threshold segmentation usually transforms the image in a binary format based on a threshold value. SVM analyze data for classification and regression analysis. Watershed segmentation groups the pixels of image based on their intensities. Morphological operations are applied to the converted image. Boundary extraction is a major part of research which uses fast bounding box algorithm which detects the affected area in motion

    Brain tumor classification using the diffusion tensor image segmentation (D-SEG) technique.

    Get PDF
    BACKGROUND: There is an increasing demand for noninvasive brain tumor biomarkers to guide surgery and subsequent oncotherapy. We present a novel whole-brain diffusion tensor imaging (DTI) segmentation (D-SEG) to delineate tumor volumes of interest (VOIs) for subsequent classification of tumor type. D-SEG uses isotropic (p) and anisotropic (q) components of the diffusion tensor to segment regions with similar diffusion characteristics. METHODS: DTI scans were acquired from 95 patients with low- and high-grade glioma, metastases, and meningioma and from 29 healthy subjects. D-SEG uses k-means clustering of the 2D (p,q) space to generate segments with different isotropic and anisotropic diffusion characteristics. RESULTS: Our results are visualized using a novel RGB color scheme incorporating p, q and T2-weighted information within each segment. The volumetric contribution of each segment to gray matter, white matter, and cerebrospinal fluid spaces was used to generate healthy tissue D-SEG spectra. Tumor VOIs were extracted using a semiautomated flood-filling technique and D-SEG spectra were computed within the VOI. Classification of tumor type using D-SEG spectra was performed using support vector machines. D-SEG was computationally fast and stable and delineated regions of healthy tissue from tumor and edema. D-SEG spectra were consistent for each tumor type, with constituent diffusion characteristics potentially reflecting regional differences in tissue microstructure. Support vector machines classified tumor type with an overall accuracy of 94.7%, providing better classification than previously reported. CONCLUSIONS: D-SEG presents a user-friendly, semiautomated biomarker that may provide a valuable adjunct in noninvasive brain tumor diagnosis and treatment planning

    3D Convolution Neural Networks for Medical Imaging; Classification and Segmentation : A Doctor’s Third Eye

    Get PDF
    Master's thesis in Information- and communication technology (IKT591)In this thesis, we studied and developed 3D classification and segmentation models for medical imaging. The classification is done for Alzheimer’s Disease and segmentation is for brain tumor sub-regions. For the medical imaging classification task we worked towards developing a novel deep architecture which can accomplish the complex task of classifying Alzheimer’s Disease volumetrically from the MRI scans without the need of any transfer learning. The experiments were performed for both binary classification of Alzheimer’s Disease (AD) from Normal Cognitive (NC), as well as multi class classification between the three stages of Alzheimer’s called NC, AD and Mild cognitive impairment (MCI). We tested our model on the ADNI dataset and achieved mean accuracy of 94.17% and 89.14% for binary classification and multiclass classification respectively. In the second part of this thesis which is segmentation of tumors sub-regions in brain MRI images we studied some popular architecture for segmentation of medical imaging and inspired from them, proposed our architecture of end-to-end trainable fully convolutional neural net-work which uses attention block to learn the localization of different features of the multiple sub-regions of tumor. Also experiments were done to see the effect of weighted cross-entropy loss function and dice loss function on the performance of the model and the quality of the output segmented labels. The results of evaluation of our model are received through BraTS’19 dataset challenge. The model is able to achieve a dice score of 0.80 for the segmentation of whole tumor, and a dice scores of 0.639 and 0.536 for other two sub-regions within the tumor on validation data. In this thesis we successfully applied computer vision techniques for medical imaging analysis. We show the huge potential and numerous benefits of deep learning to combat and detect diseases opens up more avenues for research and application for automating medical imaging analysis

    Segmentation Method for Pathological Brain Tumor and Accurate Detection using MRI

    Get PDF
    Image segmentation is challenging task in field of medical image processing. Magnetic resonance imaging is helpful to doctor for detection of human brain tumor within three sources of images (axil, corneal, sagittal). MR images are nosier and detection of brain tumor location as feature is more complicated. Level set methods have been applied but due to human interaction they are affected so appropriate contour has been generated in discontinuous regions and pathological human brain tumor portion highlighted after applying binarization, removing unessential objects; therefore contour has been generated. Then to classify tumor for segmentation hybrid Fuzzy K Mean-Self Organization Mapping (FKM-SOM) for variation of intensities is used. For improved segmented accuracy, classification has been performed, mainly features are extracted using Discrete Wavelet Transformation (DWT) then reduced using Principal Component Analysis (PCA). Thirteen features from every image of dataset have been classified for accuracy using Support Vector Machine (SVM) kernel classification (RBF, linear, polygon) so results have been achieved using evaluation parameters like Fscore, Precision, accuracy, specificity and recall

    3D Convolutional Neural Networks for Tumor Segmentation using Long-range 2D Context

    Full text link
    We present an efficient deep learning approach for the challenging task of tumor segmentation in multisequence MR images. In recent years, Convolutional Neural Networks (CNN) have achieved state-of-the-art performances in a large variety of recognition tasks in medical imaging. Because of the considerable computational cost of CNNs, large volumes such as MRI are typically processed by subvolumes, for instance slices (axial, coronal, sagittal) or small 3D patches. In this paper we introduce a CNN-based model which efficiently combines the advantages of the short-range 3D context and the long-range 2D context. To overcome the limitations of specific choices of neural network architectures, we also propose to merge outputs of several cascaded 2D-3D models by a voxelwise voting strategy. Furthermore, we propose a network architecture in which the different MR sequences are processed by separate subnetworks in order to be more robust to the problem of missing MR sequences. Finally, a simple and efficient algorithm for training large CNN models is introduced. We evaluate our method on the public benchmark of the BRATS 2017 challenge on the task of multiclass segmentation of malignant brain tumors. Our method achieves good performances and produces accurate segmentations with median Dice scores of 0.918 (whole tumor), 0.883 (tumor core) and 0.854 (enhancing core). Our approach can be naturally applied to various tasks involving segmentation of lesions or organs.Comment: Submitted to the journal Computerized Medical Imaging and Graphic
    corecore