7 research outputs found

    Study of the speckle noise effects over the eigen decomposition of polarimetric SAR data: a review

    No full text
    This paper is focused on considering the effects of speckle noise on the eigen decomposition of the co- herency matrix. Based on a perturbation analysis of the matrix, it is possible to obtain an analytical expression for the mean value of the eigenvalues and the eigenvectors, as well as for the Entropy, the Anisotroopy and the dif- ferent a angles. The analytical expressions are compared against simulated polarimetric SAR data, demonstrating the correctness of the different expressions.Peer ReviewedPostprint (published version

    Statistical tests for a ship detector based on the Polarimetric Notch Filter

    Get PDF
    Ship detection is an important topic in remote sensing and Synthetic Aperture Radar has a valuable contribution, allowing detection at night time and with almost any weather conditions. Additionally, polarimetry can play a significant role considering its capability to discriminate between different targets. Recently, a new ship detector exploiting polarimetric information was developed, namely the Geometrical Perturbation Polarimetric Notch Filter (GP-PNF). This work is focused on devising two statistical tests for the GP-PNF. The latter allow an automatic and adaptive selection of the detector threshold. Initially, the probability density function (pdf) of the detector is analytically derived. Finally, the Neyman-Pearson (NP) lemma is exploited to set the threshold calculating probabilities using the clutter pdf (i.e. a Constant False Alarm Rate, CFAR) and a likelihood ratio (LR). The goodness of fit of the clutter pdf is tested with four real SAR datasets acquired by the RADARSAT-2 and the TanDEM-X satellites. The former images are quad-polarimetric, while the latter are dual-polarimetric HH/VV. The data are accompanied by the Automatic Identification System (AIS) location of vessels, which facilitates the validation of the detection masks. It can be observed that the pdf's fit the data histograms and they pass the two sample Kolmogorov-Smirnov and χ2 tests

    Estimation of the Degree of Polarization in Polarimetric SAR Imagery : Principles and Applications

    Get PDF
    Les radars à synthèse d’ouverture (RSO) polarimétriques sont devenus incontournables dans le domaine de la télédétection, grâce à leur zone de couverture étendue, ainsi que leur capacité à acquérir des données dans n’importe quelles conditions atmosphériques de jour comme de nuit. Au cours des trois dernières décennies, plusieurs RSO polarimétriques ont été utilisés portant une variété de modes d’imagerie, tels que la polarisation unique, la polarisation double et également des modes dits pleinement polarimétriques. Grâce aux recherches récentes, d’autres modes alternatifs, tels que la polarisation hybride et compacte, ont été proposés pour les futures missions RSOs. Toutefois, un débat anime la communauté de la télédétection quant à l’utilité des modes alternatifs et quant au compromis entre la polarimétrie double et la polarimétrie totale. Cette thèse contribue à ce débat en analysant et comparant ces différents modes d’imagerie RSO dans une variété d’applications, avec un accent particulier sur la surveillance maritime (la détection des navires et de marées noires). Pour nos comparaisons, nous considérons un paramètre fondamental, appelé le degré de polarisation (DoP). Ce paramètre scalaire a été reconnu comme l’un des paramètres les plus pertinents pour caractériser les ondes électromagnétiques partiellement polarisées. A l’aide d’une analyse statistique détaillée sur les images polarimétriques RSO, nous proposons des estimateurs efficaces du DoP pour les systèmes d’imagerie cohérente et incohérente. Ainsi, nous étendons la notion de DoP aux différents modes d’imagerie polarimétrique hybride et compacte. Cette étude comparative réalisée dans différents contextes d’application dégage des propriétés permettant de guider le choix parmi les différents modes polarimétriques. Les expériences sont effectuées sur les données polarimétriques provenant du satellite Canadian RADARSAT-2 et le RSO aéroporté Américain AirSAR, couvrant divers types de terrains tels que l’urbain, la végétation et l’océan. Par ailleurs nous réalisons une étude détaillée sur les potentiels du DoP pour la détection et la reconnaissance des marées noires basée sur les acquisitions récentes d’UAVSAR, couvrant la catastrophe de Deepwater Horizon dans le golfe du Mexique. ABSTRACT : Polarimetric Synthetic Aperture Radar (SAR) systems have become highly fruitful thanks to their wide area coverage and day and night all-weather capabilities. Several polarimetric SARs have been flown over the last few decades with a variety of polarimetric SAR imaging modes; traditional ones are linear singleand dual-pol modes. More sophisticated ones are full-pol modes. Other alternative modes, such as hybrid and compact dual-pol, have also been recently proposed for future SAR missions. The discussion is vivid across the remote sensing society about both the utility of such alternative modes, and also the trade-off between dual and full polarimetry. This thesis contributes to that discussion by analyzing and comparing different polarimetric SAR modes in a variety of geoscience applications, with a particular focus on maritime monitoring and surveillance. For our comparisons, we make use of a fundamental, physically related discriminator called the Degree of Polarization (DoP). This scalar parameter has been recognized as one of the most important parameters characterizing a partially polarized electromagnetic wave. Based on a detailed statistical analysis of polarimetric SAR images, we propose efficient estimators of the DoP for both coherent and in-coherent SAR systems. We extend the DoP concept to different hybrid and compact SAR modes and compare the achieved performance with different full-pol methods. We perform a detailed study of vessel detection and oil-spill recognition, based on linear and hybrid/compact dual-pol DoP, using recent data from the Deepwater Horizon oil-spill, acquired by the National Aeronautics and Space Administration (NASA)/Jet Propulsion Laboratory (JPL) Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). Extensive experiments are also performed over various terrain types, such as urban, vegetation, and ocean, using the data acquired by the Canadian RADARSAT-2 and the NASA/JPL Airborne SAR (AirSAR) system

    RADARSAT-2 Polarimetric Radar Imaging for Lake Ice Mapping

    Get PDF
    Changes in lake ice dates and duration are useful indicators for assessing long-term climate trends and variability in northern countries. Lake ice cover observations are also a valuable data source for predictions with numerical ice and weather forecasting models. In recent years, satellite remote sensing has assumed a greater role in providing observations of lake ice cover extent for both modeling and climate monitoring purposes. Polarimetric radar imaging has become a promising tool for lake ice mapping at high latitudes where cloud cover and polar darkness severely limit observations from optical sensors. In this study, we assessed and characterized the physical scattering mechanisms of lake ice from fully polarimetric RADARSAT-2 datasets obtained over Great Bear Lake, Canada, with the intent of classifying open water and ice cover during the freeze-up and break-up periods. Model-based and eigen-based decompositions were employed to construct the coherency matrix into deterministic scattering mechanisms, and secondary physical parameters were generated following the polarimetric decompositions. This study presents an application of the Markov Random Field by introducing radar signals and polarimetric parameters as features. These features were labeled using the entropy-alpha Wishart classifier. We show that the selected polarimetric parameters can help with interpretation of radar-ice/water interactions and can be used successfully for water-ice segmentation. As more satellite SAR sensors are being launched or planned, such as the Sentinel-1a/b series and the upcoming RADARSAT Constellation Mission, the rapid volume growth of data and their analysis require the development of robust automated algorithms. The approach developed in this study was therefore designed with the intent of moving towards fully automated mapping of lake ice for consideration by ice services

    Quad polarimetric synthetic aperture radar analysis of icebergs in Greenland and Svalbard

    Get PDF
    Polarimetric synthetic aperture radar (PolSAR) has been widely used in ocean and cryospheric applications. This is because, PolSAR can be used in all-day operations and in areas of cloud cover, and therefore can provide valuable large-scale monitoring in polar regions, which is very helpful to shipping and offshore maritime operations. In the last decades, attention has turned to the potential of PolSAR to detect icebergs in the Arctic since they are a major hazard to vessels. However, there is a substantial lack of literature exploring the potentialities of PolSAR and the understanding of iceberg scattering mechanisms. Additionally, it is not known if high resolution PolSAR can be used to detect icebergs smaller than 120 metres. This thesis aims to improve the knowledge of the use of PolSAR scattering mechanisms of icebergs, and detection of small icebergs. First, an introduction to PolSAR is outlined in chapter two, and monitoring of icebergs is presented in chapter three. The first data chapter (Chapter 4) is focused on developing a multi-scale analysis of icebergs using parameters from the Cloude-Pottier and the Yamaguchi decompositions, the polarimetric span and the Pauli scattering vector. This method is carried out using ALOS-2 PALSAR quad polarimetric L-band SAR on icebergs in Greenland. This approach outlines the good potential for using PolSAR for future iceberg classification. One of the main important outcomes is that icebergs are composed by a combination of single targets, which therefore may require a more complex way of processing SAR data to properly extract physical information. In chapter five, the problem of detecting icebergs is addressed by introducing six state-of-the-art detectors previously applied to vessel monitoring. These detectors are the Dual Intensity Polarisation Ratio Anomaly Detector (iDPolRAD), Polarimetric Notch Filter (PNF), Polarimetric Matched Filter (PMF), reflection symmetry (sym), Optimal Polarimetric Detector (OPD) and the Polarimetric Whitening Filter (PWF). Cloude-Pottier entropy, and first and third eigenvalues (eig1 and eig3) of the coherency matrix are also utilised as parameters for comparison. This approach uses the same ALOS-2 dataset, but also evaluates detection performance in two scenarios: icebergs in open ocean, and in sea ice. Polarimetric modes (quad-pol, dual-pol, and single intensities) are also considered for comparison. Currently it is very difficult to detect icebergs less than 120 metres in length using this approach, due to the scattering mechanisms of icebergs and sea ice being very similar. However, it was possible to obtain detection performances of the OPD and PWF, which both showed a Probability of Detection (PF) of 0.99 when the Probability of False Alarms (PF) was set to 10-5 in open ocean. Similarly, in dual pol images, the PWF gave the best performance with a PD of 0.90. Results in sea ice found eig3 to be the best detector with a PD of 0.90 while in dual-pol mode, iDPolRAD gave a PD of 0.978. Single intensity detector performance found the HV channel gave the best detection with a PD of 0.99 in open ocean and 0.87 in sea ice. In the previous two approaches, only satellite data is used. However, in chapter six, data from a ground-based Ku-band Gamma Portable Radio Interferometer (GPRI) instrument is introduced, providing images that are synchronised with the satellite acquisitions. In this approach, the same six detectors are applied to three multitemporal RADARSAT-2 quad pol C-band SAR images on icebergs in Kongsfjorden, Svalbard to evaluate the detection performance within a changing fjord environment. As before, we also make use of Cloude-Pottier entropy, eig1 and eig3. Finally, we evaluate the target-to-clutter ratio (TCR) of the icebergs and check for correlation between the backscattering coefficients and the iceberg dimension. The results obtained from this thesis present original additions to the literature that contributes to the understanding of PolSAR in cryospheric applications. Although these methods are applied to PolSAR and ground-based radar on vessels, they have been applied for the first time on icebergs in this thesis. To summarise, the main findings are that icebergs cannot be represented as single or partial targets, but they do exhibit a collection of single targets clustered together. This result leads to the fact that entropy is not sufficient as a parameter to detect icebergs. Detection results show that the OPD and PWF detectors perform best in an open ocean setting and using quad-pol mode. These results are degraded in dual-pol mode, while single intensity detection is best in the HV cross polarisation channel. When these detectors are applied to the RADARSAT-2 in Svalbard, the OPD and PWF detectors also perform best with PD values ranging between 0.5-0.75 for a PF of 0.01-0.05. However, the sea ice present in the fjord degrades performance across all detectors. Correlation plots with iceberg size show that a regression is not straightforward and Computer Vision methodologies may work best for this

    Segmentation and Classification of Multimodal Imagery

    Get PDF
    Segmentation and classification are two important computer vision tasks that transform input data into a compact representation that allow fast and efficient analysis. Several challenges exist in generating accurate segmentation or classification results. In a video, for example, objects often change the appearance and are partially occluded, making it difficult to delineate the object from its surroundings. This thesis proposes video segmentation and aerial image classification algorithms to address some of the problems and provide accurate results. We developed a gradient driven three-dimensional segmentation technique that partitions a video into spatiotemporal objects. The algorithm utilizes the local gradient computed at each pixel location together with the global boundary map acquired through deep learning methods to generate initial pixel groups by traversing from low to high gradient regions. A local clustering method is then employed to refine these initial pixel groups. The refined sub-volumes in the homogeneous regions of video are selected as initial seeds and iteratively combined with adjacent groups based on intensity similarities. The volume growth is terminated at the color boundaries of the video. The over-segments obtained from the above steps are then merged hierarchically by a multivariate approach yielding a final segmentation map for each frame. In addition, we also implemented a streaming version of the above algorithm that requires a lower computational memory. The results illustrate that our proposed methodology compares favorably well, on a qualitative and quantitative level, in segmentation quality and computational efficiency with the latest state of the art techniques. We also developed a convolutional neural network (CNN)-based method to efficiently combine information from multisensor remotely sensed images for pixel-wise semantic classification. The CNN features obtained from multiple spectral bands are fused at the initial layers of deep neural networks as opposed to final layers. The early fusion architecture has fewer parameters and thereby reduces the computational time and GPU memory during training and inference. We also introduce a composite architecture that fuses features throughout the network. The methods were validated on four different datasets: ISPRS Potsdam, Vaihingen, IEEE Zeebruges, and Sentinel-1, Sentinel-2 dataset. For the Sentinel-1,-2 datasets, we obtain the ground truth labels for three classes from OpenStreetMap. Results on all the images show early fusion, specifically after layer three of the network, achieves results similar to or better than a decision level fusion mechanism. The performance of the proposed architecture is also on par with the state-of-the-art results

    Dual-polarization (HH/HV) RADARSAT-2 ScanSAR Observations of New, Young and First-year Sea Ice

    Get PDF
    Observations of sea ice from space are routinely used to monitor sea ice extent, concentration and type to support human marine activity and climate change studies. In this study, eight dual-polarization (dual-pol) (HH/HV) RADARSAT-2 ScanSAR images acquired over the Gulf of St. Lawrence during the winter of 2009 are analysed to determine what new or improved sea ice information is provided by dual-pol C-band synthetic aperture radar (SAR) data at wide swath widths, relative to single co-pol data. The objective of this study is to assess how dual-pol RADARSAT-2 ScanSAR data might improve operational ice charts and derived sea ice climate data records. In order to evaluate the dual-pol data, ice thickness and surface roughness measurements and optical remote sensing data were compared to backscatter signatures observed in the SAR data. The study found that: i) dual-pol data provide improved separation of ice and open water, particularly at steep incidence angles and high wind speeds; ii) the contrast between new, young and first-year (FY) ice types is reduced in the cross-pol channel; and iii) large areas of heavily deformed ice can reliably be separated from level ice in the dual-pol data, but areas of light and moderately ridged ice cannot be resolved and the thickness of heavily deformed ice cannot be determined. These results are limited to observations of new, young and FY ice types in winter conditions. From an operational perspective, the improved separation of ice and open water will increase the accuracy of ice edge and total ice concentration estimates while reducing the time required to produce image analysis charts. Further work is needed to determine if areas of heavily ridged ice can be separated from areas of heavily rafted ice based on knowledge of ice conditions in the days preceding the formation of high backscatter deformed ice. If rafted and ridged ice can be separated, tactical ridged ice information should be included on image analysis charts. The dual-pol data can also provide small improvements to ice extent and concentration data in derived climate data records. Further analysis of dual-pol RADARSAT-2 ScanSAR data over additional ice regimes and seasons is required
    corecore