1,599 research outputs found

    Secret Message Transmission over Quantum Channels under Adversarial Quantum Noise: Secrecy Capacity and Super-Activation

    Full text link
    We determine the secrecy capacities of AVQCs (arbitrarily varying quantum channels). Both secrecy capacity with average error probability and with maximal error probability are derived. Both derivations are based on one common code construction. The code we construct fulfills a stringent secrecy requirement, which is called the strong code concept. We determine when the secrecy capacity is a continuous function of the system parameters and completely characterize its discontinuity points both for average error criterion and for maximal error criterion. Furthermore, we prove the phenomenon "super-activation" for secrecy capacities of AVQCs, i.e., two quantum channels both with zero secrecy capacity, which, if used together, allow secure transmission with positive capacity. We also discuss the relations between the entanglement distillation capacity, the entanglement generating capacity, and the strong subspace transmission capacity for AVQCs.Comment: arXiv admin note: text overlap with arXiv:1702.0348

    Secrecy Through Synchronization Errors

    Full text link
    In this paper, we propose a transmission scheme that achieves information theoretic security, without making assumptions on the eavesdropper's channel. This is achieved by a transmitter that deliberately introduces synchronization errors (insertions and/or deletions) based on a shared source of randomness. The intended receiver, having access to the same shared source of randomness as the transmitter, can resynchronize the received sequence. On the other hand, the eavesdropper's channel remains a synchronization error channel. We prove a secrecy capacity theorem, provide a lower bound on the secrecy capacity, and propose numerical methods to evaluate it.Comment: 5 pages, 6 figures, submitted to ISIT 201

    Polar codes for private classical communication

    Full text link
    We construct a new secret-key assisted polar coding scheme for private classical communication over a quantum or classical wiretap channel. The security of our scheme rests on an entropic uncertainty relation, in addition to the channel polarization effect. Our scheme achieves the symmetric private information rate by synthesizing "amplitude" and "phase" channels from an arbitrary quantum wiretap channel. We find that the secret-key consumption rate of the scheme vanishes for an arbitrary degradable quantum wiretap channel. Furthermore, we provide an additional sufficient condition for when the secret key rate vanishes, and we suspect that satisfying this condition implies that the scheme requires no secret key at all. Thus, this latter condition addresses an open question from the Mahdavifar-Vardy scheme for polar coding over a classical wiretap channel.Comment: 11 pages, 2 figures, submission to the 2012 International Symposium on Information Theory and its Applications (ISITA 2012), Honolulu, Hawaii, US
    • …
    corecore