7 research outputs found

    Resource allocation for 5G technologies under statistical queueing constraints

    Get PDF
    As the launch of fifth generation (5G) wireless networks is approaching, recent years have witnessed comprehensive discussions about a possible 5G standard. Many transmission scenarios and technologies have been proposed and initial over-the-air experimental trials have been conducted. Most of the existing literature studies on 5G technologies have mainly focused on the physical layer parameters and quality of service (QoS) requirements, e.g., achievable data rates. However, the demand for delay-sensitive data traffic over wireless networks has increased exponentially in the recent years, and is expected to further increase by the time of 5G. Therefore, other constraints at the data-link layer concerning the buffer overflow and delay violation probabilities should also be regarded. It follows that evaluating the performance of the 5G technologies when such constraints are considered is a timely task. Motivated by this fact, in this thesis we explore the performance of three promising 5G technologies when operating under certain QoS at the data-link layer. We follow a cross-layer approach to examine the interplay between the physical and data-link layers when statistical QoS constraints are inflicted in the form of limits on the delay violation and buffer overflow probabilities. Noting that wireless systems, generally, have limited physical resources, in this thesis we mainly target designing adaptive resource allocation schemes to maximize the system performance under such QoS constraints. We initially investigate the throughput and energy efficiency of a general class of multiple-input multiple-output (MIMO) systems with arbitrary inputs. As a cross-layer evaluation tool, we employ the effective capacity as the main performance metric, which is the maximum constant data arrival rate at a buffer that can be sustained by the channel service process under specified QoS constraints. We obtain the optimal input covariance matrix that maximizes the effective capacity under a short-term average power budget. Then, we perform an asymptotic analysis of the effective capacity in the low signal-to-noise ratio and large-scale antenna (massive MIMO) regimes. Such analysis has a practical importance for 5G scenarios that necessitate low latency, low power consumption, and/or ability to simultaneously support massive number of users. Non-orthogonal multiple access (NOMA) has attracted significant attention in the recent years as a promising multiple access technology for 5G. In this thesis, we consider a two-user power-domain NOMA scheme in which both transmitters employ superposition coding and the receiver applies successive interference cancellation (SIC) with a certain order. For practical concerns, we consider limited transmission power budgets at the transmitters, and assume that both transmitters have arbitrarily distributed input signals. We again exploit the effective capacity as the main cross-layer performance measure. We provide a resource management scheme that can jointly obtain the optimal power allocation policies at the transmitters and the optimal decoding order at the receiver, with the goal of maximizing the effective capacity region that provides the maximum allowable sustainable arrival rate region at the transmitters' buffers under QoS guarantees. In the recent years, visible light communication (VLC) has emerged as a potential transmission technology that can utilize the visible light spectrum for data transmission along with illumination. Different from the existing literature studies on VLC, in this thesis we consider a VLC system in which the access point (AP) is unaware of the channel conditions, thus the AP sends the data at a fixed rate. Under this assumption, and considering an ON-OFF data source, we provide a cross-layer study when the system is subject to statistical buffering constraints. To this end, we employ the maximum average data arrival rate at the AP buffer and the non-asymptotic bounds on buffering delay as the main performance measures. To facilitate our analysis, we adopt a two-state Markov process to model the fixed-rate transmission strategy, and we then formulate the steady-state probabilities of the channel being in the ON and OFF states. The coexistence of radio frequency (RF) and VLC systems in typical indoor environments can be leveraged to support vast user QoS needs. In this thesis, we examine the benefits of employing both technologies when operating under statistical buffering limitations. Particularly, we consider a multi-mechanism scenario that utilizes RF and VLC links for data transmission in an indoor environment. As the transmission technology is the main physical resource to be concerned in this part, we propose a link selection process through which the transmitter sends data over the link that sustains the desired QoS guarantees the most. Considering an ON-OFF data source, we employ the maximum average data arrival rate at the transmitter buffer and the non-asymptotic bounds on data buffering delay as the main performance measures. We formulate the performance measures under the assumption that both links are subject to average and peak power constraints

    Radio Resource Management for New Application Scenarios in 5G: Optimization and Deep Learning

    Get PDF
    The fifth-generation (5G) New Radio (NR) systems are expected to support a wide range of emerging applications with diverse Quality-of-Service (QoS) requirements. New application scenarios in 5G NR include enhanced mobile broadband (eMBB), massive machine-type communication (mMTC), and ultra-reliable low-latency communications (URLLC). New wireless architectures, such as full-dimension (FD) massive multiple-input multiple-output (MIMO) and mobile edge computing (MEC) system, and new coding scheme, such as short block-length channel coding, are envisioned as enablers of QoS requirements for 5G NR applications. Resource management in these new wireless architectures is crucial in guaranteeing the QoS requirements of 5G NR systems. The traditional optimization problems, such as subcarriers and user association, are usually non-convex or Non-deterministic Polynomial-time (NP)-hard. It is time-consuming and computing-expensive to find the optimal solution, especially in a large-scale network. To solve these problems, one approach is to design a low-complexity algorithm with near optimal performance. In some cases, the low complexity algorithms are hard to obtain, deep learning can be used as an accurate approximator that maps environment parameters, such as the channel state information and traffic state, to the optimal solutions. In this thesis, we design low-complexity optimization algorithms, and deep learning frameworks in different architectures of 5G NR to resolve optimization problems subject to QoS requirements. First, we propose a low-complexity algorithm for a joint cooperative beamforming and user association problem for eMBB in 5G NR to maximize the network capacity. Next, we propose a deep learning (DL) framework to optimize user association, resource allocation, and offloading probabilities for delay-tolerant services and URLLC in 5G NR. Finally, we address the issue of time-varying traffic and network conditions on resource management in 5G NR

    Wireless Information and Power Transfer in Communication Networks: Performance Analysis and Optimal Resource Allocation

    Get PDF
    Energy harvesting is considered as a prominent solution to supply the energy demand for low-power consuming devices and sensor nodes. This approach relinquishes the requirements of wired connections and regular battery replacements. This thesis analyzes the performance of energy harvesting communication networks under various operation protocols and multiple access schemes. Furthermore, since the radio frequency signal has energy, in addition to conveying information, it is also possible to power energy harvesting component while establishing data connectivity with information-decoding component. This leads to the concept of simultaneous wireless information and power transfer. The central goal of this thesis is to conduct a performance analysis in terms of throughput and energy efficiency, and determine optimal resource allocation strategies for wireless information and power transfer. In the first part of the thesis, simultaneous transfer of information and power through wireless links to energy harvesting and information decoding components is studied considering finite alphabet inputs. The concept of non-uniform probability distribution is introduced for an arbitrary input, and mathematical formulations that relate probability distribution to the required harvested energy level are provided. In addition, impact of statistical quality of service (QoS) constraints on the overall performance is studied, and power control algorithms are provided. Next, power allocation strategies that maximize the system energy efficiency subject to peak power constraints are determined for fading multiple access channels. The impact of channel characteristics, circuit power consumption and peak power level on the node selection, i.e., activation of user equipment, and the corresponding optimal transmit power level are addressed. Initially, wireless information transfer only is considered and subsequently wireless power transfer is taken into account. Assuming energy harvesting components, two scenarios are addressed based on the receiver architecture, i.e, having separated antenna or common antenna for the information decoding and energy harvesting components. In both cases, optimal SWIPT power control policies are identified, and impact of the required harvested energy is analyzed. The second line of research in this thesis focuses on wireless-powered communication devices that operate based on harvest-then-transmit protocol. Optimal time allocation for the downlink and uplink operation interval are identified formulating throughput maximization and energy-efficiency maximization problems. In addition, the performance gain among various types of downlink-uplink operation protocols is analyzed taking into account statistical QoS constraints. Furthermore, the performance analysis of energy harvesting user equipment is extended to full-duplex wireless information and power transfer as well as cellular networks. In full-duplex operation, optimal power control policies are identified, and the significance of introducing non-zero mean component on the information-bearing signal is analyzed. Meanwhile, SINR coverage probabilities, average throughput and energy efficiency are explicitly characterized for wireless-powered cellular networks, and the impact of downlink SWIPT and uplink mmWave schemes are addressed. In the final part of the thesis, energy efficiency is considered as the performance metric, and time allocation strategies that maximize energy efficiency for wireless powered communication networks with non-orthogonal multiple access scheme are determined. Low complex algorithms are proposed based on Dinkelbach’s method. In addition, the impact of statistical QoS constraints imposed as limitations on the buffer violation probabilities is addressed

    Delay QoS Provisioning and Optimal Resource Allocation for Wireless Networks

    Get PDF
    Recent years have witnessed a significant growth in wireless communication and networking due to the exponential growth in mobile applications and smart devices, fueling unprecedented increase in both mobile data traffic and energy demand. Among such data traffic, real-time data transmissions in wireless systems require certain quality of service (QoS) constraints e.g., in terms of delay, buffer overflow or packet drop/loss probabilities, so that acceptable performance levels can be guaranteed for the end-users, especially in delay sensitive scenarios, such as live video transmission, interactive video (e.g., teleconferencing), and mobile online gaming. With this motivation, statistical queuing constraints are considered in this thesis, imposed as limitations on the decay rate of buffer overflow probabilities. In particular, the throughput and energy efficiency of different types of wireless network models are analyzed under QoS constraints, and optimal resource allocation algorithms are proposed to maximize the throughput or minimize the delay. In the first part of the thesis, the throughput and energy efficiency analysis for hybrid automatic repeat request (HARQ) protocols are conducted under QoS constraints. Approximations are employed for small QoS exponent values in order to obtain closed-form expressions for the throughput and energy efficiency metrics. Also, the impact of random arrivals, deadline constraints, outage probability and QoS constraints are studied. For the same system setting, the throughput of HARQ system is also analyzed using a recurrence approach, which provides more accurate results for any value of the QoS exponent. Similarly, random arrival models and deadline constraints are considered, and these results are further extended to the finite-blocklength coding regime. Next, cooperative relay networks are considered under QoS constraints. Specifically, the throughput performance in the two-hop relay channel, two-way relay channel, and multi-source multi-destination relay networks is analyzed. Finite-blocklength codes are considered for the two-hop relay channel, and optimization over the error probabilities is investigated. For the multi-source multi-destination relay network model, the throughput for both cases of with and without CSI at the transmitter sides is studied. When there is perfect CSI at the transmitter, transmission rates can be varied according to instantaneous channel conditions. When CSI is not available at the transmitter side, transmissions are performed at fixed rates, and decoding failures lead to retransmission requests via an ARQ protocol. Following the analysis of cooperative networks, the performance of both half-duplex and full-duplex operations is studied for the two-way multiple input multiple output (MIMO) system under QoS constraints. In full-duplex mode, the self-interference inflicted on the reception of a user due to simultaneous transmissions from the same user is taken into account. In this setting, the system throughput is formulated by considering the sum of the effective capacities of the users in both half-duplex and full-duplex modes. The low signal to noise ratio (SNR) regime is considered and the optimal transmission/power-allocation strategies are characterized by identifying the optimal input covariance matrices. Next, mode selection and resource allocation for device-to-device (D2D) cellular networks are studied. As the starting point, ransmission mode selection and resource allocation are analyzed for a time-division multiplexed (TDM) cellular network with one cellular user, one base station, and a pair of D2D users under rate and QoS constraints. For a more complicated setting with multiple cellular and D2D users, two joint mode selection and resource allocation algorithms are proposed. In the first algorithm, the channel allocation problem is formulated as a maximum-weight matching problem, which can be solved by employing the Hungarian algorithm. In the second algorithm, the problem is divided into three subproblems, namely user partition, power allocation and channel assignment, and a novel three-step method is proposed by combining the algorithms designed for the three subproblems. In the final part of the thesis, resource allocation algorithms are investigated for content delivery over wireless networks. Three different systems are considered. Initially, a caching algorithm is designed, which minimizes the average delay of a single-cell network. The proposed algorithm is applicable in settings with very general popularity models, with no assumptions on how file popularity varies among different users, and this algorithm is further extended to a more general setting, in which the system parameters and the distributions of channel fading change over time. Next, for D2D cellular networks operating under deadline constraints, a scheduling algorithm is designed, which manages mode selection, channel allocation and power maximization with acceptable complexity. This proposed scheduling algorithm is designed based on the convex delay cost method for a D2D cellular network with deadline constraints in an OFDMA setting. Power optimization algorithms are proposed for all possible modes, based on our utility definition. Finally, a two-step intercell interference (ICI)-aware scheduling algorithm is proposed for cloud radio access networks (C-RANs), which performs user grouping and resource allocation with the goal of minimizing delay violation probability. A novel user grouping algorithm is developed for the user grouping step, which controls the interference among the users in the same group, and the channel assignment problem is formulated as a maximum-weight matching problem in the second step, which can be solved using standard algorithms in graph theory
    corecore