7 research outputs found

    Multi -Layer Based Data Aggregation Algorithm for Convergence Platform of IoT and Cloud Computing

    Get PDF
    Sensor Networks (SN) are deployed in smart domain to sense the environment which is essential to provide the services according to the users need. Hundreds or sometimes thousands of sensors are involved in sensor networks for monitoring the target phenomenon. Large scale of sensory data have to be handle by the sensor network which create several problems such as waste of sensors energy, data redundancy. To overcome these deficiencies one most practice solution is data aggregation which can effectively decrease the massive amount of data generated in SNs by lessening occurrence in the sensing data. The aim of this method is to lessen the massive use of data generated by surrounding nodes, thus saving network energy and providing valuable information for the end user. The effectiveness of any data aggregation technique is largely dependent on topology of the network. Among the various network topologies clustering is preferred as it provides better controllability, scalability and network maintenance phenomenon. In this research, a data aggregation technique is proposed based on Periodic Sensor Network (PSN) which achieved aggregation of data at two layers: the sensor nodes layer and the cluster head layer. In sensor node layer set similarity function is used for checking the redundant data for each sensor node whereas Euclidean distance function is utilized in cluster head layer for discarding the redundancy of data between different sensor nodes. This aggregation technique is implemented in smart home where sensor network is deployed to capture environment related information (temperature, moisture, light, H2 level). Collected information is analyzed using ThinkSpeak cloud platform. For performance evaluation amount of aggregated data, number of pairs of redundant data, energy consumption, data latency, and data accuracy are analyzed and compared with the other state-of-art techniques. The result shows the important improvement of the performance of sensor networks

    Autoconfiguration with Global Addresses Using IEEE 802.15.4 Standard in Multi-hop Networks

    Get PDF
    Wireless sensor networks continue to attract a lot of attention from academia and industry promoting large-scale deployments in applications related to the Internet of Things (IoT). Unfortunately, a network containing a large number of sensor nodes also leads to difficulty in the configuring process and assignment of identifiers to nodes. Various approaches have been proposed to solve problems of auto-configuration in Wireless sensor networks, however, still, there are some issues remaining related to automatic assign identifiers A cluster-based hierarchical global address allocation scheme is proposed for a wireless sensor network. The proposal uses the IEEE 802.15.4 protocol and aims to reduce the latency of the identifier assignments and reduce the network level processes to be performed at the node. The address allocation process assigns each node a unique global address, which allows the node to have end-to-end connectivity without network-level involvement. The scenario of adding new nodes to the network or nodes that leave it is contemplated. Finally, the proposed scheme is evaluated experimentally, verifying the correct operation of the algorithm proposed in the implemented prototype

    Optimization of Energy-Efficient Cluster Head Selection Algorithm for Internet of Things in Wireless Sensor Networks

    Get PDF
    The Internet of Things (IoT) now uses the Wireless Sensor Network (WSN) as a platform to sense and communicate data. The increase in the number of embedded and interconnected devices on the Internet has resulted in a need for software solutions to manage them proficiently in an elegant and scalable manner. Also, these devices can generate massive amounts of data, resulting in a classic Big Data problem that must be stored and processed. Large volumes of information have to be produced by using IoT applications, thus raising two major issues in big data analytics. To ensure an efficient form of mining of both spatial and temporal data, a sensed sample has to be collected. So for this work, a new strategy to remove redundancy has been proposed. This classifies all forms of collected data to be either relevant or irrelevant in choosing suitable information even before they are forwarded to the base station or the cluster head. A Low-Energy Adaptive Clustering Hierarchy (LEACH) is a cluster-based routing protocol that uses cluster formation. The LEACH chooses one head from the network sensor nodes, such as the Cluster Head (CH), to rotate the role to a new distributed energy load. The CHs were chosen randomly with the possibility of all CHs being concentrated in one locality. The primary idea behind such dynamic clustering was them resulted in more overheads due to changes in the CH and advertisements. Therefore, the LEACH was not suitable for large networks. Here, Particle Swarm Optimization (PSO) and River Formation Dynamics are used to optimize the CH selection (RFD). The results proved that the proposed method to have performed better compared to other methods

    Data redundancy reduction for energy-efficiency in wireless sensor networks: a comprehensive review

    Get PDF
    Wireless Sensor Networks (WSNs) play a significant role in providing an extraordinary infrastructure for monitoring environmental variations such as climate change, volcanoes, and other natural disasters. In a hostile environment, sensors' energy is one of the crucial concerns in collecting and analyzing accurate data. However, various environmental conditions, short-distance adjacent devices, and extreme usage of resources, i.e., battery power in WSNs, lead to a high possibility of redundant data. Accordingly, the reduction in redundant data is required for both resources and accurate information. In this context, this paper presents a comprehensive review of the existing energy-efficient data redundancy reduction schemes with their benefits and limitations for WSNs. The entire concept of data redundancy reduction is classified into three levels, which are node, cluster head, and sink. Additionally, this paper highlights existing key issues and challenges and suggested future work in reducing data redundancy for future research

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Wireless sensor networks for big data systems

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. Before discovering meaningful knowledge from big data systems, it is first necessary to build a data-gathering infrastructure. Among many feasible data sources, wireless sensor networks (WSNs) are rich big data sources: a large amount of data is generated by various sensor nodes in large-scale networks. However, unlike typical wireless networks, WSNs have serious deficiencies in terms of data reliability and communication owing to the limited capabilities of the nodes. Moreover, a considerable amount of sensed data are of no interest, meaningless, and redundant when a large number of sensor nodes is densely deployed. Many studies address the existing problems and propose methods to overcome the limitations when constructing big data systems with WSN. However, a published paper that provides deep insight into this research area remains lacking. To address this gap in the literature, we present a comprehensive survey that investigates state-of-the-art research work on introducing WSN in big data systems. Potential applications and technical challenges of networks and infrastructure are presented and explained in accordance with the research areas and objectives. Finally, open issues are presented to discuss promising directions for further research
    corecore