251 research outputs found

    Wireless Power Transfer in Massive MIMO Aided HetNets with User Association

    Get PDF
    This paper explores the potential of wireless power transfer (WPT) in massive multiple input multiple output (MIMO) aided heterogeneous networks (HetNets), where massive MIMO is applied in the macrocells, and users aim to harvest as much energy as possible and reduce the uplink path loss for enhancing their information transfer. By addressing the impact of massive MIMO on the user association, we compare and analyze two user association schemes. We adopt the linear maximal ratio transmission beam-forming for massive MIMO power transfer to recharge users. By deriving new statistical properties, we obtain the exact and asymptotic expressions for the average harvested energy. Then we derive the average uplink achievable rate under the harvested energy constraint.Comment: 36 pages, 11 figures, to appear in IEEE Transactions on Communication

    On wireless power transfer in two-tier massive MIMO hetnets: Energy and rate analysis

    Get PDF
    In this paper, we investigate the potential application of wireless power transfer (WPT) in heterogeneous networks (HetNets) with massive multiple-input multiple-output (MIMO) antennas. Users first harvest energy from the downlink WPT, and then use the harvested energy for uplink transmission. We adopt the downlink received signal power (DRSP) based user association to maximize the harvested energy, and address the impact of massive MIMO on the user association. By using new statistical properties, we then obtain the exact expressions for the average harvested energy and the average uplink achievable rate of a user in such networks. Numerical results corroborate our analysis and demonstrate that compared to deploying more small cells, the use of a large number of antennas is more appealing since it brings in significant increase in the harvested energy of the HetNets. In addition, results illustrate that serving more users in the massive MIMO aided macrocells decreases the harvested energy and the uplink achievable rate of the HetNets

    Wireless Power Transfer in Massive MIMO-Aided HetNets With User Association

    Get PDF
    This paper explores the potential of wireless power transfer (WPT) in massive multiple-input multiple-output (MIMO)-aided heterogeneous networks (HetNets), where massive MIMO is applied in the macrocells, and users aim to harvest as much energy as possible and reduce the uplink path loss for enhancing their information transfer. By addressing the impact of massive MIMO on the user association, we compare and analyze user association schemes: 1) downlink received signal power (DRSP)-based approach for maximizing the harvested energy and 2) uplink received signal power (URSP)-based approach for minimizing the uplink path loss. We adopt the linear maximal-ratio transmission beamforming for massive MIMO power transfer to recharge users. By deriving new statistical properties, we obtain the exact and asymptotic expressions for the average harvested energy. Then, we derive the average uplink

    User Association in 5G Networks: A Survey and an Outlook

    Get PDF
    26 pages; accepted to appear in IEEE Communications Surveys and Tutorial

    Non-Orthogonal Multiple Access in Large-Scale Heterogeneous Networks

    Get PDF
    In this paper, the potential benefits of applying non-orthogonal multiple access (NOMA) technique in KK-tier hybrid heterogeneous networks (HetNets) is explored. A promising new transmission framework is proposed, in which NOMA is adopted in small cells and massive multiple-input multiple-output (MIMO) is employed in macro cells. For maximizing the biased average received power for mobile users, a NOMA and massive MIMO based user association scheme is developed. To evaluate the performance of the proposed framework, we first derive the analytical expressions for the coverage probability of NOMA enhanced small cells. We then examine the spectrum efficiency of the whole network, by deriving exact analytical expressions for NOMA enhanced small cells and a tractable lower bound for massive MIMO enabled macro cells. Lastly, we investigate the energy efficiency of the hybrid HetNets. Our results demonstrate that: 1) The coverage probability of NOMA enhanced small cells is affected to a large extent by the targeted transmit rates and power sharing coefficients of two NOMA users; 2) Massive MIMO enabled macro cells are capable of significantly enhancing the spectrum efficiency by increasing the number of antennas; 3) The energy efficiency of the whole network can be greatly improved by densely deploying NOMA enhanced small cell base stations (BSs); and 4) The proposed NOMA enhanced HetNets transmission scheme has superior performance compared to the orthogonal multiple access~(OMA) based HetNets.Comment: IEEE Journal on Selected Areas in Communications (JSAC), 201

    Decoupled UL/DL User Association in Wireless-Powered HetNets with Full-Duplex Small Cells

    Get PDF
    In this paper, we propose two downlink (DL)-uplink (UL) decoupled (DUDe) user association schemes in wireless-powered full-duplex (FD) heterogeneous networks (HetNets). We consider a two-tier HetNet comprising of half-duplex (HD) massive multi-antenna macrocell base stations (MBSs) and dual-antenna FD small cell base stations (SBSs) to support UL and DL transmissions of FD user equipments (UEs). Each FD UE is first associated to one MBS/SBS, based on the mean maximum received power (MMP) scheme or maximum received power (MRP) to harvest energy. During the consecutive data transmission phase, UEs choose to receive DL traffic from the same MBSs/SBSs as that associated with during energy harvesting phase, and send UL traffic through the same/another SBS. Leveraging tools from the stochastic geometry, we develop an analytical framework to analyze the average harvested energy and derive expressions for the UL and DL coverage probabilities of the proposed DUDe user association schemes. Our results show that there is an optimal value for the SBS density in the wireless-powered FD HetNets, at which both DL and UL coverage probabilities are maximized. Moreover, by applying MMPA and MRPA scheme, wireless-powered FD HetNets with DUDe achieves up to 138.78%138.78\% and 83.37%83.37\% energy efficiency gain over the FD HetNets with DL/UL coupled user association scheme and without wireless power transfer, respectively

    A New Look at Physical Layer Security, Caching, and Wireless Energy Harvesting for Heterogeneous Ultra-dense Networks

    Get PDF
    Heterogeneous ultra-dense networks enable ultra-high data rates and ultra-low latency through the use of dense sub-6 GHz and millimeter wave (mmWave) small cells with different antenna configurations. Existing work has widely studied spectral and energy efficiency in such networks and shown that high spectral and energy efficiency can be achieved. This article investigates the benefits of heterogeneous ultra-dense network architecture from the perspectives of three promising technologies, i.e., physical layer security, caching, and wireless energy harvesting, and provides enthusiastic outlook towards application of these technologies in heterogeneous ultra-dense networks. Based on the rationale of each technology, opportunities and challenges are identified to advance the research in this emerging network.Comment: Accepted to appear in IEEE Communications Magazin

    User Association and Load Balancing for Massive MIMO through Deep Learning

    Full text link
    This work investigates the use of deep learning to perform user cell association for sum-rate maximization in Massive MIMO networks. It is shown how a deep neural network can be trained to approach the optimal association rule with a much more limited computational complexity, thus enabling to update the association rule in real-time, on the basis of the mobility patterns of users. In particular, the proposed neural network design requires as input only the users' geographical positions. Numerical results show that it guarantees the same performance of traditional optimization-oriented methods

    Efficient resource allocation for 5G hybrid wireless networks

    Get PDF
    This thesis explores three directions of energy-efficiency(EE) and spectral efficiency(SE) under 5G wireless networks. Firstly, we study the optimization of power control for the small (two-user) interference channel in which the terminals are time-switched between the signal-processing and energy-harvesting phases. Both energy harvesting and signal-processing processes are during the downlink. The objective is to maximize the sum-rate, subject to the minimum data and harvested energy constraints at the receivers, assuming a fixed time-switching coefficient. The key contribution is using a geometric approach that analyzes the feasible region governed by the constraints, which gives rise to the optimal power control solution. Another topic focuses on the performance analysis of two user association schemes for wireless power transfer (WPT) in heterogeneous networks (HetNets) massive multiple-input multiple-output (MIMO) antennas, downlink for the WPT in the first phase and uplink for wireless information transfer (WIT) in the second phase. The two user association schemes considered in the analysis are the Downlink received signal power (DRSP) based approach for maximizing the harvested energy; and the uplink received signal power (URSP) based approach for minimizing the uplink path loss. In the downlink, we adopt a low-complexity approach for massive MIMO power transfer to recharge users. Then we derive the average uplink achievable rate with the harvested energy. The last topic analyses a large-scale mmWave ad hoc network in the randomly located eavesdroppers area, where eavesdroppers can still intercept the confidential messages, since they may reside in the signal beam. This chapter explores the potential of physical layer security in mmWave ad hoc networks. Specifically, we characterize the impact of mmWave channel characteristics, random blockages, and antenna gains on the secrecy performance. For the special case of the uniform linear array (ULA), a tractable approach is proposed to evaluate the average achievable secrecy rate
    corecore