151,660 research outputs found

    Beamforming for Magnetic Induction based Wireless Power Transfer Systems with Multiple Receivers

    Full text link
    Magnetic induction (MI) based communication and power transfer systems have gained an increased attention in the recent years. Typical applications for these systems lie in the area of wireless charging, near-field communication, and wireless sensor networks. For an optimal system performance, the power efficiency needs to be maximized. Typically, this optimization refers to the impedance matching and tracking of the split-frequencies. However, an important role of magnitude and phase of the input signal has been mostly overlooked. Especially for the wireless power transfer systems with multiple transmitter coils, the optimization of the transmit signals can dramatically improve the power efficiency. In this work, we propose an iterative algorithm for the optimization of the transmit signals for a transmitter with three orthogonal coils and multiple single coil receivers. The proposed scheme significantly outperforms the traditional baseline algorithms in terms of power efficiency.Comment: This paper has been accepted for presentation at IEEE GLOBECOM 2015. It has 7 pages and 5 figure

    iTETRIS Platform Architecture for the Integration of Cooperative Traffic and Wireless Simulations

    Get PDF
    The use of cooperative wireless communications can support driving through dynamic exchange of Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) messages. Traffic applications based on such systems will be able to generate a safer, faster, cheaper and cleaner way for people and goods to move. In this context, the iTERIS project aims at providing the framework to combine traffic mobility and wireless communication simulations for large scale testing of traffic management solutions based on cooperative systems. This paper addresses the description and explanation of the implementation choices taken to build a modular and interoperable architecture integrating heterogeneous traffic and wireless simulators, and application algorithms supporting traffic management strategies. The functions of an “in-between” control system for managing correct simulation executions over the platform are presented. The inter-block interaction procedures identified to ensure optimum data transfer for simulation efficiency are also introduced

    Performance Measure of Multi-User Detection Algorithms for MIMO Relay Network

    Get PDF
    Due to the emerging demand on new multimedia applications, next generation wireless communication systems will need to support data rates much greater than 3G systems. This will require more efficient utilization of the radio resources. Relay and multiple input multiple-output (MIMO) techniques can significantly enhance system power efficiency, extend system coverage and are considered promising candidates for next generation wireless communication systems. In this paper, we study the zero-forcing (ZF) and minimum mean-squared error (MMSE) algorithms for a MIMO relay network and compare their performance in terms of bit-errorrate (BER). In particular, we show their performance in a single-user as well as in a multi-user scenario. Multiuser MIMO relay algorithms have significant performance improvement over single-user algorithms

    Performance Optimization Over Wireless Links With Operating Constraints

    Get PDF
    Wireless communication is one of the most active areas of technological innovations and groundbreaking research ranging from simple cellular phones to highly complex military monitoring devices. The emergence of radios with cognitive capabilities like software defined radios has revolutionized modern communication systems by providing transceivers which can vary their output waveforms as well as their demodulation methods. This adaptability plays a pivotal role in efficient utilization of radio spectrum in an intelligent way while simultaneously not interfering with other radio devices operating on the same frequency band. Thus, it is safe to say that current and future wireless systems and networks depend on their adaptation capability which in turn presents many new technical challenges in hardware and protocol design, power management, interference metrics, distributed algorithms, Quality of Service (QoS) requirements arid security issues. Transmitter adaptation methods have gained importance, and numerous transmitter optimization algorithms have been proposed in recent years. The main idea behind these algorithms is to optimize the transmitted signals according to the patterns of interference in the operating environment such that some specific criterion is optimized. In this context, the objective of this dissertation is to propose transmitter adaptation algorithms in conjunction with power control for wireless systems focusing on performance optimization based on operating constraints. Specifically, this dissertation achieves joint transmitter adaptation and power control in the uplink and downlink of wireless systems with applications to Multiple-Input-Multiple-Output (MIMO) wireless systems and cognitive radio networks. In addition, performance of the proposed algorithms are evaluated in the context of fading channels, taking into consideration the time-varying nature of wireless channels

    Comparison of voice activity detection algorithms for wireless personal communications systems

    Get PDF
    V oice activity detection (VAD) algorithms have become an in tegral part of many of the recently standardized wireless cellular and P ersonal Communications Systems (PCS). In this paper, we present acomparative study of the performance of three recently proposed VAD algorithms under various acoustical background noise conditions. We also propose new ideas to enhance the performance of a VAD algorithm in wireless PCS speech applications. 1
    • …
    corecore