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ABSTRACT 

PERFORMANCE OPTIMIZATION OVER WIRELESS 
LINKS WITH OPERATING CONSTRAINTS 

Shiny Abraham 

Old Dominion University, 2012 

Director: Dr. Dimitrie C. Popescu 

Wireless communication is one of the most active areas of technological inno­

vations and groundbreaking research ranging from simple cellular phones to highly 

complex military monitoring devices. The emergence of radios with cognitive capabil­

ities like software defined radios has revolutionized modern communication systems 

by providing transceivers which can vary their output waveforms as well as their 

demodulation methods. This adaptability plays a pivotal role in efficient utilization 

of radio spectrum in an intelligent way while simultaneously not interfering with 

other radio devices operating on the same frequency band. Thus, it is safe to say 

that current and future wireless systems and networks depend on their adaptation 

capability which in turn presents many new technical challenges in hardware and 

protocol design, power management, interference metrics, distributed algorithms, 

Quality of Service (QoS) requirements and security issues. Transmitter adaptation 

methods have gained importance, and numerous transmitter optimization algorithms 

have been proposed in recent years. The main idea behind these algorithms is to 

optimize the transmitted signals according to the patterns of interference in the op­

erating environment such that some specific criterion is optimized. In this context, 



the objective of this dissertation is to propose transmitter adaptation algorithms in 

conjunction with power control for wireless systems focusing on performance opti­

mization based on operating constraints. Specifically, this dissertation achieves joint 

transmitter adaptation and power control in the uplink and downlink of wireless sys­

tems with applications to Multiple-Input-Multiple-Output(MIMO) wireless systems 

and cognitive radio networks. In addition, performance of the proposed algorithms 

are evaluated in the context of fading channels, taking into consideration the time-

varying nature of wireless channels. 
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Chapter I 

1 

INTRODUCTION 

The evolution of cellular technology from wired to wireless in the late twentieth 

century is undoubtedly a revolutionary milestone in the history of communication 

networks and has undergone exponential growth in the last decade. Cellular phones 

and wireless local area networks (WLANs) have become an integral part of our daily 

lives and coupled with applications like smart home appliances, video teleconfer­

encing and remote tele-medicine, have ensured that the essence of wireless technol­

ogy permeates our very existence. The broader impact of wireless technology in a 

global context can also be observed in military applications where identification and 

tracking of enemy targets, detection of chemical and biological attacks, support of 

unmanned robotic vehicles and counter-terrorism are explicit consequences of the 

wireless boom [1], The transition from wired to wireless technology brought with 

it significant challenges that must be addressed in order for this vision to become 

reality. Unlike wired networks, the wireless environment is unpredictable with noise 

and interference levels being the primary causes of degraded performance and signal 

impairments. 

Current and future generation wireless systems and networks depend greatly on 

transceiver adaptation capability; this is enabled by the emergence of cognitive and 

software defined radios [2,3]. This adaptive capability results in versatile transmitters 

that vary their waveforms and versatile receivers that can vary their filters for a 

more efficient use of available radio resources. Numerous algorithms for transmitter 
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adaptation have been proposed in recent years both for uplink wireless systems where 

multiple transmitters communicate with a common receiver [4-9] and for downlink 

systems where a single transmitter sends information to multiple receivers [10-13]. 

Various algorithms for specific wireless systems such as CDMA, OFDM or MIMO 

have also been proposed [4,7-9]. 

1.1 RESEARCH MOTIVATION 

An important attribute of future generations of wireless systems is their adap­

tation capability that results in systems which are more efficient in their use of the 

limited frequency spectrum along with interference mitigation among systems that 

use the same frequency bands. The need for adaptive capability in wireless systems 

was brought about by the emergence of cognitive and software defined radio plat­

forms that have enabled adaptive radios with versatile transmitters to vary their 

waveforms and versatile receivers to vary their filters over time [3]. 

Efficient use of radio resources in future generations of wireless systems is vital 

in order to provide a wide range of services for mobile users, from multimedia trans­

missions performed in real time to transmission of data that can tolerate delay and 

which is not performed in real time. Radio spectrum is a scarce resource that is 

tightly regulated by the Federal Communications Commission (FCC) and the Na­

tional Telecommunications and Information Administration (NTIA), and it forms a 

major source of investment in many countries where spectral licenses are auctioned 

to the highest bidder [2], In order to get a reasonable return on its investment, the 

spectrum has to be utilized efficiently and also be reused over and over in the same 
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geographical area. This presents technical challenges like interference, reduced ca­

pacity and degraded performance in its practical implementation. Effective methods 

of radio resource management include optimum utilization of the allocated spectrum 

and transmitter power control. These methods result in interference mitigation and 

increased system capacity with the transmitter power control in particular contribut­

ing to extending the battery life in mobile stations by ensuring that they transmit at 

the minimum power level necessary to achieve a specified Quality of Service (QoS). 

In addition to spectral auctions, unlicensed frequency bands are available to radio 

services that meet certain predefined regulatory requirements. A major drawback of 

unlicensed bands is the interference generated when many unlicensed devices occupy 

the band and operate at close proximities. 

Traditional approaches to combating interference usually involve measurement 

and/or prediction of the channel followed by appropriate selection of modulation 

methods and signal processing algorithms for reliable reception [14]. This resulted 

in a relatively rigid hardware infrastructure with an associated set of standards that 

lacked flexibility, scalabity and adaptability. However, the emergence of software 

defined radios enabled greater degrees of freedom in combating interference without 

being restricted by physical limitations. The concept of interference avoidance in 

adaptive systems is based on the ability of the transmitting radio to vary its waveform 

(or signature) in response to interference conditions when instructed by the receiver 

via feedback mechanisms. 
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1.2 MODELING WIRELESS LINKS 

Depending on the number of active transmitters and receivers, wireless commu­

nication links can be classified as : 

• Downlink (Broadcast Channels) where a single transmitter communicates with 

many receivers as shown in Figure 1. 

• Uplink (Multiple Access Channels) where transmitters do not cooperate but 

compete with each other for the same resources, and multiple transmitters 

(mobile terminals) send independent information to a single receiver (base sta­

tion receiver or access point) as shown in Figure 2. 

• Mutually interfering links (Interference Channels) where neither transmitters 

nor receivers cooperate and each transmitter-receiver pair attempts to commu­

nicate in the presence of interference from all other users as shown in Figure 3. 

Multiple-input multiple-output (MIMO) wireless systems employ multiple anten­

nas at both the transmitter and receiver which exploit spatial dimensions in wireless 

channels to provide increased capacity and diversity, as well as to mitigate interfer­

ence [15]. 

The interference channel shown in Figure 3 can be represented in a general signal-

space formulation which makes it applicable to a wide variety of wireless transmission 

schemes and scenarios (such as OFDM, CDMA, or multiple antenna/MIMO systems) 

[5.6]. 

We consider a wireless system with K active transmitters that use block trans­

missions for sending information [5, 6] such that the iV-dimensional vector xfc = 
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FIG. 1: Block Diagram for Downlink Scenario. 
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FIG. 2: Block Diagram for Uplink Scenario. 
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Tx 1 Rx 1 

kk 

Tx k Rx k 

H KK 

Tx K Rx K 

FIG. 3: Interference system model with K links. 

[xik. . .  X;Vfc]T  transmitted by a  given user k is written in terms of the information 

symbols vector bfe = [b[h^... 6^]T as 

Mk , 
" i  =  ̂ 6S)sS)\/K' =  Stp;'2bt, k = l , . . . , K  (1.2.1) 

m—1 

/L\ 
where sm is an iV-dimensional vector that precodes symbol m of user k that is 

transmitted with power pk• In compact form, S* = [s^... ... s^] is the N x 

Mk precoding matrix corresponding to user k and Pfc = diagfp^,...,} is the 

Mfc x Mk transmitted power matrix of user k. Symbols transmitted by distinct users 

a re  assumed to  be  uncor re la ted ,  tha t  i s  E ' fb fcbJ]  =  0M k xM t  and  jE7[b f c bJ]  =  l M k x M k -

We also assume that the columns of the precoding matrix are normalized to unit 

Ok)T (&) norm, sm sm = 1, Vm = 1 , . . . , M k ,  such that the average transmitted power 
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corresponding to user k is given by 

£{ |M 2 }  =  Trace [P k ]  <  P^  (1-2.2) 

where P™3* is the upper limit on user k transmit power. We note that this approach 

is general and covers many wireless scenarios as the N elements of the transmitted 

vector Xfc may be sent over N distinct dimensions defined by non-overlapping pulses 

(or "chips") in typical CDMA systems [16], tones of different frequencies in multi-

carrier and OFDM systems [17], spatial dimensions in multiple antenna and MIMO 

systems [8], or even wavelets [18]. 

We assume that the K active users in the system transmit to K receivers through 

vector channels described by matrices of dimension N xN which embed all char­

acteristics of the physical channels between transmitters and receivers such as atten­

uation, multipath, or multiple antennas [9,14,19-21], The H** matrices are assumed 

known at the receivers as well as fixed for the entire duration of the transmission, 

and the iV-dimensional received signal vector at the Arth receiver corresponding to 

one signalling interval is given by the expression 

K 

rfc = HfafcX* + 2̂ + nk (1.2.3) 

it = interference 4- noise on wireless link k 

where Hkj is the N x N dimensional channel matrix between transmitter j and 

receiver k and rife is the iV-dimensional additive white Gaussian noise at receiver 

k with zero mean and positive definite covariance matrix ] = W^. The 

correlation matrix of the interference-t-noise i k  corrupting link k is given by 

K 

Riit = •E'tUiJ] = Y. HfcjSfcPfcSfe Hjj -f Wfc (1.2.4) 
i= 
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and 

Rrfc =  E [ r k r J ]  =  H k k S k P k S T
k H l k  + R** (1.2.5) 

is the correlation matrix of the received signal rk .  This adaptive wireless system 

forms the basic system model referred to in the following chapters. 

1.3 TRANSMITTER ADAPTATION AND POWER CONTROL IN 

WIRELESS SYSTEMS 

Recent advances in the field of software defined radios have revolutionized wire­

less systems through incorporating artificial intelligence by allowing users to adapt 

their operating parameters such as frequency, transmit power and output waveforms 

as well as their demodulation methods based on their operating environment. Trans­

mitter adaptation in wireless systems has been investigated in the context of specific 

wireless systems like CDMA, OFDM and MIMO [4,7-9], and the main idea behind 

this is to optimize the transmitted signals according to the patterns of interference in 

the operating environment such that some specific criterion is optimized. Transmit­

ter optimization for interference avoidance through signature (precoder, waveform or 

codeword) adaptation can be either centralized or decentralized. In the former adap­

tation scenario, a common receiver acquires optimal transmitter parameters from all 

the wireless links and in turn assigns them to individual users whereas in the latter 

adaptation scenario, users independently update their transmission parameters in 

response to feedback from the receiver. In general, centralized systems result in large 

network overhead, and their computational complexity increases with size. Hence, a 

decentralized or distributed adaptation scheme is preferred especially in applications 
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where decision making and dynamic spectrum sharing are vital requirements. 

Traditionally, transmitter power control is implemented by regulating the trans­

mitted power to provide each user with an acceptable connection by limiting the 

interference caused by other users, and the power control problem requires that a 

vector of users transmitter powers be computed such that a specified set of constraints 

is met. 

Until recently, transmitter adaptation and power control were treated as distinct 

problems. Efficient utilization of radio resources require transmitter adaptation in 

addition to transmitter power control, and this has resulted in the need for joint 

transmitter adaptation and power control in wireless systems. More recently, game-

theoretic approaches have been used in the design of joint codeword and power control 

in wireless systems. We note that, while the uplink wireless scenario has been studied 

extensively over the past years and algorithms for uplink transmitter adaptation are 

presented in [9,22-24], the downlink scenario has received less attention and few 

works discuss downlink transmitter adaptation [11,20,25]. Transmit beamforming 

and receiver combining techniques have been employed to make use of the significant 

diversity that is available in MIMO systems [26,27]. When users are expected to 

meet specified target SINRs at the receiver, beamforming is complemented with 

transmitter power control, and joint beamforming and power control problems have 

been discussed in the context of single-input single-output (SISO) [28], single-input 

multiple output (SIMO) [29] and multiple-input single-output (MISO). 

In addition to efficient spectrum utilization, interference mitigation and power 

control, it is of great importance for wireless communication systems to satisfy cer­

tain Quality of Service (QoS) requirements that ensure acceptable performance and 
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quality of the system. In the following chapters we will come across a very widely 

used QoS parameter, the target Signal-to-Interference+Noise-Ratio (S1NR) and per­

form joint transmitter adaptation and power control based on this QoS parameter. 

Another QoS parameter we come across in this dissertation is the achievable rate of 

link k given by [30] 

^ log det Rrk - ̂  log det (1.3.1) 

which implies convergence of an algorithm to socially optimal ensemble of precoders 

that maximizes 72*. 

1.4 PROBLEM STATEMENT 

In this dissertation, performance optimization of wireless systems is achieved with 

the help of adaptive transmitters and operating constraints at the receiver. The main 

objectives of this dissertation are to: 

1. Propose algorithms for downlink transmitter adaptation based on greedy SINR 

maximization and study their fixed point properties. 

2. Achieve joint transmitter adaptation and power control using constrained op­

timization theory and propose specific algorithms for downlink and uplink sce­

narios. 

3. Investigate convergence of the proposed algorithms. 

4. Analyze the effect of fading channels in the implementation of the proposed 

joint transmitter adaptation and power control algorithms. 
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1.5 DISSERTATION ROAD MAP 

Chapter II proposes algorithms for downlink transmitter adaptation based on 

greedy SINR maximization and interference avoidance. The proposed algorithms 

are implemented using precoder adaptation based on collaborative receivers, inverse 

channel assumptions and matched filter receiver techniques followed by their fixed 

point properties for various scenarios like ideal and non-ideal channels, white and 

colored noise at all user receivers and point-to-point communication. 

Chapter III studies joint transmitter adaptation and power control in downlink 

wireless systems using constrained optimization theory. The adaptation scenario is 

formulated as a constrained optimization problem that aims to minimize the to­

tal interference subject to target SINR and unit norm codeword constraints. Using 

necessary and sufficient conditions of the optimization problem, a joint transmit­

ter adaptation and power control algorithm is proposed which performs incremental 

updates of the codeword and power values that culminate in an optimal codeword 

and power ensemble. Simulation results illustrate how the proposed algorithm can 

be used for tracking varying target SINRs and/or a variable number of active users. 

As an extension of this approach, a general framework based on block transmissions 

and linear precoders is considered, and the joint precoder adaptation and power con­

trol objective is formulated as a constrained optimization problem that minimizes 

the total sum of Minimum Mean Square Errors (MMSE's) subject to target SINR 

constraints. Necessary and sufficient conditions that must be satisfied by the op­

timal precoder and power matrices axe determined, and the resulting incremental 

algorithms are implemented until a fixed point is reached where the specified target 
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SINRs are achieved with minimum transmitted power. Simulation results illustrate 

convergence of the algorithm and dependence of convergence speed on the algorithm 

constants. 

Chapter IV presents a similar study of joint precoder adaptation and power con­

trol in uplink scenarios with target SINR requirements. The uplink adaptation sce­

nario is formulated as multiple constrained optimization problems corresponding to 

the multiple active transmitters, and this differs from the downlink scenario that has 

a single constrained optimization problem corresponding to the base station trans­

mitter. A detailed analysis of necessary and sufficient conditions is presented followed 

by the proposed joint precoder adaptation and power control algorithm which is im­

plemented in a distributed fashion until a fixed point is reached where the specified 

target SINRs are achieved with minimum transmitted power. Simulation results il­

lustrate convergence of the algorithm followed by its application in cognitive radio 

networks. 

Chapter V analyzes performance of the incremental algorithm for joint trans­

mitter adaptation and power control in wireless systems in the context of fading 

channels. Multipath Rayleigh fast fading channels are considered where the channel 

between any given user and the base station is dynamic with a small coherence time 

such that it is not practical to estimate channel characteristics. Average charac­

teristics of the multipath fading channels are used to compute precoder and power 

matrices for which target SINR values are satisfied; then, Monte Carlo simulations 

are performed to study the performance for actual and average channel realizations. 

The performance measure used to evaluate performance of the algorithm in this work 

is the probability of outage. 



Chapter VI concludes the dissertation with final discussions and future directions 

of research work. 

Most of the results in this dissertation have been presented previously. The work 

on algorithms for transmitter adaptation in downlink wireless systems in Chapter II 

was presented at the 2009 IEEE Canadian Conference on Electrical and Computer 

Engineering (CCECE 2009) [31]. The results from Chapter III on joint transmitter 

adaptation and power control in downlink wireless systems was presented in part 

at the 2010 IEEE Radio and Wireless Symposium (EWS 2010) [32], the 2011 IEEE 

Conference on Information Sciences and Systems (CISS 2011) [33] and submitted 

for review to the Journal of Wireless Communications and Mobile Computing [34]. 

Work on uplink wireless systems in Chapter IV was presented in part at the 2010 

IEEE Asilomar Conference on Signals, Systems [35] and the extension to Cognitive 

Radio Networks was accepted for publication in the Elsevier Journal on Physical 

Communications [36]. Work on fading channels in Chapter VII was submitted for 

review to the 2013 IEEE Radio and Wireless Symposium (RWS 2013) [37]. 

This dissertation uses IEEE Transaction style for the bibliography and citation. 
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ALGORITHMS FOR TRANSMITTER ADAPTATION IN 

DOWNLINK WIRELESS SYSTEMS 

In this chapter we discuss algorithms for downlink transmitter adaptation that are 

based on greedy SINR maximization through interference avoidance [14]. The first 

proposed algorithm is based on the collaborative approach introduced in [30] where 

the signals received by all active users are combined and used for joint decoding, 

and the proposed algorithm yields socially optimal precoder ensembles which max­

imize individual SINRs at the collaborative receiver as well as sum capacity. Since 

collaboration can be difficult to achieve in the downlink scenario we discuss also 

two alternative algorithms for precoder adaptation where no collaboration among 

receivers is needed. In the first one "inverse channel" observations similar to [24] 

are used to obtain the decision variables and decode received signals by users. In 

this case the received signal by a given user is first equalized by multiplication with 

its inverse channel matrix followed by matched filter detection. The second alter­

native algorithm is based on the interference avoidance procedure in [25] and uses 

matched filters and channel information to obtain the decision variable directly from 

the received signal. 

II. 1 DOWNLINK SYSTEM MODEL 

The downlink system model is a particular case of the system model presented in 

section 1.2 with a single transmitter and multiple receivers with single codewords per 



15 

user. Assuming that there are K active users in the system the signal transmitted 

by the base station is expressed similar to equation 1.2.1 as 

K 

x = =  s p i / 2 b ,  ( i i . i . i )  
6=1 

and the received signal by a given user k is given by 

rfc = HfcXfc + njfe = HfcSP1/2b + nfc. (II.1.2) 

The N x N vector channel matrix H* is the mathematical representation of the 

physical channel between the base station transmitter and user k receiver and is a 

particular case of the channel matrix Hfc* defined in section 1.2 with a single trans­

mitter and multiple receivers. Channel matrices Hi,..., Hk are assumed invertible 

and known at the receiver as well as fixed for the entire duration of the transmission. 

In this setup we discuss algorithms that adapt the precoders {si,..., s^-} as­

signed to users through various approaches based on greedy SINR maximization and 

interference avoidance. 

II.2 COLLABORATIVE PRECODER ADAPTATION 

Reference [30] considers a wireless system with multiple transmitters and receivers 

that collaborate and presents an algorithm for precoder adaptation based on greedy 

SINR maximization through interference avoidance. This algorithm converges to a 

socially optimal ensemble of precoders which maximizes sum capacity. We note that 

the downlink wireless system considered in our paper and described in the previous 

section is a particular case of the general wireless scenario considered in [30] where 

the system has multiple receivers but only a single transmitter. Following [30] and 
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assuming collaboration among receivers, we may form the K^-dimensional vector r 

by grouping the received signals by all users as shown below 

ri Hi 

*K hk 

SP1/2b + 

ni 

nK 

(II.2.1) 

•V* 
H 

or in compact form 

r = HSP1/2b + n. (II.2.2) 

The signal in equation (II.2.2) has correlation matrix 

R = E [ T T T )  =  HSPStHt + W (II.2.3) 

where matrix W is the NK x NK correlation matrix of the aggregated noise vector 

n containing the noise vectors at each receiver and is expressed in terms of the 

covariance matrices We of individual noise vectors n*, I = 1,..., K. 

Using the approach proposed for the multi-receiver system in [30] we rewrite 

(II.2.2) from a given user k perspective as 

K 

r = y/p£Hskbk + ^2 ^/peHsebg + n (II.2.4) 

desired signal f-Wfc 

interference+noise 

and assume that an MMSE receiver is used to decode user k from the received signal 

r. Denoting y* = y/pijisk, the expression of the MMSE receiver for user k is [30] 

c ,  =  R t 'y> = 
Rfc 'HfcSfc (11.2.5) 

v
/yji?yl v

/s»h'Tr'2h*S|' 
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Algorithm 1 -Collaborative Precoder Adaptation Algorithm 

1: Initial Data 

• All user precoder and power matrices S and P, as well as all channel and 
noise covariance matrices Hk and Wfc, Vfc. 

2: for each user k  =  1 , . . . ,  K  do 
3: Calculate matrix HTR^ 1H and determine its maximum eigenvector x*. 
4: Replace user k's current precoder s* by x*. 
5: end for 
6: REPEAT Step 2 UNTIL a fixed point is reached. 

where R* = R — YkYk  is the correlation of the interference+noise corrupting user 

fc's signal. The corresponding SINR expression for user k is 

The greedy SINR maximization procedure in [30] replaces user k  precoder s* with 

a new one that maximizes the SINR expression (II.2.6). We note that the right-hand 

side of (II.2.6) contains the Rayleigh quotient of matrix HTR^1H multiplied by the 

desired user k power pk and for fixed user power is maximized when s* is replaced 

by the eigenvector corresponding to the maximum eigenvalue (also referred to as 

the maximum eigenvector) of HTR^1H. Based on this procedure the algorithm for 

downlink precoder adaptation is formally stated as Algorithm 1. 

We note that Step 2 of Algorithm 1 defines an ensemble iteration, in which all 

precoders are updated one time. We also note that this algorithm monotonically 

increases the sum capacity of the multiple access channel (II.2.2) given by [30] 

7k°l) = yfcRfcVfc = PksjHJRk 
xHsk. (II.2.6) 

Caum = log det R - ̂  log det W (II.2.7) 

and converges precoder ensembles that maximize Caum 
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Algorithm 1 may be implemented at the base station transmitter which needs 

to know (in addition to the user precoders and powers which are already known) 

also the downlink channel matrices, H*, for all active users in the system along 

with their corresponding noise covariance matrices Wfe. We note that channel state 

information for the downlink can be made available at the transmitter by using either 

direct channel feedback in the case of frequency-division duplex (FDD) systems or 

the reciprocal channel information from the uplink for time-division duplex (TDD) 

systems [38], while knowledge of noise covariance matrices at each receiver may be 

obtained over a dedicated feedback channel. However, in order to take advantage of 

the optimal precoders and to obtain the maximum SINR at the receiver collaborative 

decoding using all received signals is required which may not be practical. Alternative 

algorithms in which users are not required to perform collaborative decoding to 

achieve maximum SINR are presented in the following sections. 

II.3 PRECODER ADAPTATION BASED ON INVERSE CHANNEL 

OBSERVATIONS 

Assuming that the user channel matrices are invertible, in this approach the 

receiver at a given user k uses an "inverse channel" observation to decode the trans­

mitted information symbol by the base station. The "inverse-channel" observation 

vector is obtained similar to [24] by equalizing the received signal through multipli­

cation with the inverse of the given user k channel matrix, and has the 

expression 
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K 

*k = bky/pkSk+ Y2 beVPest + Hklnfc- (II.3.1) 
e=i,e^k 

The "inverse-channel" observation is processed by a matched filter corresponding 

to user fc's precoder to obtain the decision variable for user k, dk = s^r*, and is 

expressed as 

K 

dk = bk^/pk + ^2 bey/pisJse + slH^nk (II.3.2) 
1=1,tyk 

which implies that the expression of the SINR for user k  is 

_ Eh. fTT Q Q\ 
l k  s T

k n^{Q k -p k H k s k s r
k H T

k )n^ s k  '  •  )  

V V  ,  

z fc 
where Q k  represents the correlation matrix of the received signal at user k  receiver in 

equation (II.1.2). In order to perform greedy maximization of the SINR in this case 

we note that the denominator in equation (II.3.3) contains the Rayleigh quotient 

of matrix HjT1 (Qfc — Hj) H^T which should be minimized in this case 

to achieve maximum SINR. We note that Z k  represents the correlation matrix of 

the interference+noise that corrupts the desired signal from user k in the "inverse 

channel" observation, and replacing the user precoder sk by the minimum eigenvector 

of Zfc will ensure maximization of user k SINR. Based on this procedure we can 

define a second algorithm for downlink precoder adaptation which is formally stated 

as Algorithm 2 

Similar to Algorithm 1, Step 2 defines an ensemble iteration in which all pre-

coders are updated one time, but unlike Algorithm 1 for which convergence to a 

fixed point has been established analytically in [30] based on the monotonic increase 
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Algorithm 2 -Inverse Channel Precoder Adaptation Algorithm 

1: Initial Data 

• User precoder and power matrices S, P, channel and noise covariance ma­
trices H*, Wfcl Vfc. 

2: for each user k  =  1 , . . . ,  K  do 
3: Calculate matrix Z* and determine its minimum eigenvector u^. 
4: Replace user fc's current precoder sk by ii*. 
5: end for 
6: REPEAT Step 2 UNTIL a fixed point is reached. 

of the sum capacity C s u m  in (II.2.7), for Algorithm 2 we have only empirical evi­

dence of convergence. A fixed point of the algorithm is reached when the difference 

between two consecutive values of a stopping criterion is within a specified tolerance 

value e, and we ran extensive simulations to assess the convergence of Algorithm 2 

using the norm difference between a given precoder and its replacement as stopping 

criterion. Numerical results have shown that precoders converge to within tight norm 

difference tolerances when starting with randomly initialized user precoders, and for 

e = 10"3 precoder convergence varied from tens of ensemble iterations for low values 

of the signal space dimension to several hundred ensemble iterations for large values 

of the signal space dimensions. We have also looked at the convergence of user SINRs 

which occurs much faster than precoder convergence, and simulations have shown 

that typically this occurs in 10 4-15 ensemble iterations and does not depend on the 

dimension of the signal space. Algorithm 2 may also be implemented at the base 

station and requires similar information as Algorithm 1. However, collaborative 

decoding using all received signals is not required, and users decode their received 

signals independently in this case. 
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II.4 PRECODER ADAPTATION WITH MATCHED FILTER RE­

CEIVERS 

This approach for downlink precoder adaptation has been proposed in [24], and in 

this case users employ linear filters matched to the expression of their corresponding 

received precoder to obtain the decision variable. For a given user k the receiver 

filter has the expression 

ffc = -_-J_=Hfcsfc, k  =  1 , . . . ,  K ,  (II.4.1) 
vsfc Hfc HfcSfc 

and its decision variable in this case is dk = fjTwhich implies that the SINR at 

user k receiver is 

it" = (114.2) 
tfc 

where Zk = Qk — PfcHfcSfcsjH^ represents the correlation matrix of the interfer-

ence+noise that corrupts the desired signal from user k. We note that for a given 

user precoder sk, the user SINR is maximized by the choice of receiver filter 

fk which implies maximization of the ratio of the two quadratic forms defined by 

matrices HfcSfcS^Hj and Zk. As discussed in [24], this ratio is maximized by the 

largest eigenvalue of the matrix pencil defined by the pair of matrices 

(H k S k s jH j ,Z k )  (H-4.3) 

and implies that the optimum receiver filter f£ is the eigenvector corresponding to 

the largest generalized eigenvalue of the matrix pair (II.4.3), that is 

(II.4.4) 
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Algorithm 3 -Matched Filter Receiver based Precoder Adaptation Algorithm 

1: Initial Data 

• User precoder and power matrices S, P, channel and noise covariance ma­
trices Hfc, Wfc, VA;. 

2: for each user k  =  1,. . . ,  K  do 
3: Determine the SINR maximizing filter f£. 
4: Replace user k ' s  current precoder s* by s£. 
5: end for 
6: REPEAT Step 2 UNTIL a fixed point is reached. 

Using the same assumption as in the previous section, namely that the user 

channel matrices are invertible, the precoder update for user k is obtained using 

the expression of the SINR maximizing filter f£ as s*k = We note that this 

precoder update is similar to the uplink MMSE interference avoidance update [14], 

and based on it we define a third algorithm for downlink precoder adaptation using 

greedy SINR maximization which is formally stated as Algorithm 3. 

As in the case of the other two algorithms defined in previous sections, Step 2) 

defines an ensemble iteration in which all precoders are updated one time. Con­

vergence of Algorithm 3 to a fixed point was investigated in [24] where numerical 

results obtained from simulations are used to establish empirical convergence similar 

to Algorithm 2. We note that no analytical convergence proof is available for Al­

gorithm 2 and Algorithm 3 yet, and this will be the object of future research. We 

also note that Algorithm 3 may be implemented at the base station and requires 

similar information as Algorithm 1 and Algorithm 2 with independent decoding 

of received signals by users and no need for collaborative decoding. 
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II.5 FIXED POINT PROPERTIES 

In order to study the fixed-points properties of the proposed algorithms we per­

formed simulations for various scenarios and looked at the correlation properties of 

the resulting precoder ensembles given by the matrix SPST. In the case of ideal 

channels for all users, that is H* = I/v,VA; and white noise at all receivers, that 

is noise covariance matrices are expressed as Wk = o^I/v, Vfc , all algorithms re­

su l t ed  i n  p recode r  ensembles  hav ing  t he  same  co r r e l a t i on  ma t r ix  SPS T  = (K /N) l ^ .  

This solution corresponds to Welch Bound Equality (WBE) precoder ensembles [39] 

for which the total squared correlation (TSC) of the ensemble, defined as the sum of 

squared correlations among all precoders in the system weighted by their correspond­

ing powers, is minimized. This result can be confirmed analytically as it can easily 

be shown that in the case of ideal channel matrices the precoder updates implied 

by the three algorithms are essentially the same: the precoder of a given user k is 

replaced by the minimum eigenvector of matrix SPST — Pk^ksJ and iterating for all 

users leads to WBE precoder ensembles [14]. We note that WBE ensembles maxi­

mize sum capacity of the multiple access channel corresponding to the dual uplink 

CDMA scenario with ideal channels and white noise at the receiver. 

With ideal channel matrices and colored noise with the same covariance matrix 

at all user receivers, that is Wk = W,Wk where W is no longer a scaled iden­

tity matrix, the three algorithms yield precoder ensembles with different correlation 

properties. Among the three resulting precoder ensembles the one corresponding to 

Algorithm 2 has the same correlation properties SPST as those of the dual uplink 

scenario with ideal user channels and same noise covariance matrix W at the receiver. 
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This result can also be confirmed analytically as one can easily note that with ideal 

channels and same noise covariance matrix at all receivers the precoder updates of 

Algorithm 2 are similar to those for the dual uplink scenario with ideal channels 

and colored noise with covariance W at the receiver [14]. We note that when noise 

is colored but has different covariance matrices for different users, a meaningful com­

parison with a dual uplink scenario is difficult as the corresponding noise covariance 

matrix in the uplink scenario cannot be clearly established. 

We have also looked at point-to-point communication scenarios where the chan­

nel and noise covariance matrices are the same for all users and observed that the 

algorithms yield in general precoder ensembles with different correlations and that 

only the ensembles implied by Algorithm 2 have the same correlation as those of 

the dual uplink CDMA scenario. This was also expected as in the point-to-point 

scenario the precoder updates implied by Algorithm 2, and those corresponding to 

the uplink scenario [24] are similar. 

Simulations have also shown that in the case of interference limited systems, 

where the power of the noise corrupting the received signals corresponding to all 

users is small compared to the power of the transmitted signal, that is Trace[W^] 

< Trace[P], V/c, Algorithm 1 and Algorithm 2 yield very similar results with 

precoder correlations getting closer to those corresponding to WBE ensembles, that 

is SPST = (K/N)Ipf , as the power of the noise gets closer to zero regardless of the 

user channel matrices. We note that, while it is not obvious why WBE ensembles 

correspond to fixed points of Algorithm 1 for interference-limited scenarios, for 

Algorithm 2 this can be easily confirmed analytically as we note that in the case of 

very small noise power at the receiver the "inverse channel" observation in equation 
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(III. 1.9) is essentially identical for all users, k  = 1,K ,  and is the same as the 

uplink channel equation considered in [14] where it is shown that precoder adaptation 

based on greedy SINR maximization and minimum eigenvector replacement results 

in WBE precoder ensembles. 

In the most general case of non-ideal channels where user channel matrices are 

only assumed to be invertible but can take any form (diagonal, circulant, etc.) and 

the noise covariance matrices W* are different for distinct users, simulations have 

shown that the three proposed algorithms result in general in precoder ensembles 

that have different correlation properties. In such scenarios, additional criteria are 

needed to decide which of the resulting precoder ensembles is more desirable, and 

this will be the object of future investigations. 

II.6 CHAPTER SUMMARY 

In this chapter we considered the downlink of a wireless system and presented 

three algorithms for precoder adaptation based on various greedy SINR maximiza­

tion procedures. Algorithm 1 uses a collaborative approach and yields precoder 

ensembles that maximize the sum capacity which is a global measure for the wireless 

system when collaboration among user receivers is assumed. Since receiver collab­

oration may be difficult to achieve in the downlink scenario we also discuss two 

alternative algorithms where collaboration is not needed: Algorithm 2 is based 

on "inverse channel" observations and minimum eigenvector precoder replacement 

similar to the one proposed for uplink scenarios in [24], while Algorithm 3 uses 
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matched filters and channel knowledge along with a maximum generalized eigenvec­

tor precoder replacement as outlined in [25]. The proposed algorithms yield precoder 

ensembles that usually have different correlation properties, and additional criteria 

should be specified in order to determine which of the ensembles is desirable in down­

link scenarios. 



Chapter III 

27 

JOINT TRANSMITTER ADAPTATION AND POWER 

CONTROL IN DOWNLINK WIRELESS SYSTEMS 

In this chapter we present a new approach that combines transmitter adaptation 

with power control in downlink wireless systems with SINR constraints at the re­

ceiver terminals. We formulate this as a constrained optimization problem, and we 

derive necessary and sufficient conditions for minimizing total interference subject 

to codeword norm constraints and target SINR constraints. We then present an 

algorithm that incrementally adapts the codewords and powers to meet the speci­

fied SINR targets with minimum powers, and we study the tracking ability of the 

proposed algorithm through simulations. 

The proposed approach can be extended to more general scenarios by using a 

framework based on block transmissions and linear precoders that is applicable to 

many wireless transmission schemes and scenarios (such as OFDM, CDMA, or mul­

tiple antenna/MIMO systems [5,6]). The problem of joint precoder adaptation and 

power control subject to specific target SINR requirements is also formulated as a 

constrained optimization problem. We study the necessary conditions that must be 

satisfied by the optimal precoder and power matrices and present an incremental 

algorithm that jointly adapts transmitter precoders and power values until a fixed 

point is reached where the specified target SINRs are achieved with minimum trans­

mitted power. We analyze the dependence of convergence speed on the algorithm 

constants through simulations. 
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III.l SINR AND INTERFERENCE EXPRESSIONS FOR THE 

DOWNLINK SYSTEM MODEL 

We consider the downlink of a wireless system with a system model similar to 

that in section 1.2 but with a single transmitter and K receivers for which the 

iV-dimensional signal vector from the base station transmitter is given by equa­

tion (II. 1.1), and the iV-dimensional received signal by a given user k is given by 

equation (II. 1.2). 

Our goal for this system is to establish a procedure for joint downlink trans­

mitter adaptation and power control which reduces the total interference experi­

enced by the active receivers and ensures that they operate with specific signal-

to-interference+noise-ratios (SINRs). We note that the downlink transmitter has 

knowledge of all codewords and transmit powers for all users and that channel state 

information for the downlink can be acquired at the base station transmitter by using 

either direct channel feedback in the case of frequency-division duplex (FDD) sys­

tems or the reciprocal channel information from the uplink for time-division duplex 

(TDD) systems [38]. 

In order to establish the expression of the interference that corrupts the de­

sired information signal at a given receiver k we rewrite the received signal in equa­

tion (II. 1.2) to distinguish between the desired signal and the corresponding inter-

ference+noise: 

rk = Kkbky/pkSk + bgy/pese + n* (III.1.1) 

desired signal > ' / 
interference + noise (z*) 
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where the interference+noise zk experienced by user k has correlation matrix 

Z k  = E[z k z J
k )  =  Hfc (  J2  s e pes j \ l i j+w k .  (III.1.2) 

v=M/ fc  J  

With knowledge of user codewords, transmitted power values, channel matrices, and 

noise correlation matrices, the correlation matrix Zfc is available at the downlink 

transmitter, and parallel decomposition of user k downlink channel can be obtained. 

This is accomplished by applying a whitening transformation followed by a singu­

lar value decomposition (SVD) of the transformed channel matrix. The whitening 

transformation can be written as 

Tfc = A-1/2E^ (III.1.3) 

where the matrices E* and Afc are obtained from the diagonal decomposition of the 

correlation matrix Z* = EfcAfcEj. In the transformed coordinates, equation (III.1.1) 

is equivalent to 

rt = T*4 = TtHAVi&. + T1«, (IIU4) 

= Hfc&fcV/pfcSfc + wfc 

where Hfc = is the equivalent channel matrix corresponding to user k  and = 

TfcZfc is the equivalent white noise term with identity covariance matrix = 

IfcZfcTj = I x k .  

Parallel decomposition of user k ' s  channel is now achieved by using SVD of the 

transformed channel matrix 

H* = UfeDfcVj (III.1.5) 

where the matrix of left singular vectors is of dimension N k  x N k ,  the matrix of 

right singular vectors V* is of dimension N x N and the matrix of singular values 
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Dfc is of dimension N k  x N.  Assuming a rich scattering environment, the channel 

matrix Hfc has full rank [40, Sec. 10.2] rank(H*) = Nk, and the singular value matrix 

Dfc may be partitioned as 

D*. = Dfc 0]s / k X (N-N k )  (III.1.6) 

where Dfc is a Nk x Nk diagonal matrix containing the singular values and the zero 

matrix has the appropriate dimension. Premultiplying by Uj in equation (III. 1.4) 

we obtain the equivalent expression for (III. 1.1) 

rfc = T>kskbky/pk + wfc (III.1.7) 

where s k  = Vj s k  and wfc = Ujwfc. 

By defining the left inverse of matrix D* as 

D£ 
D*1 

(III.1.8) 

0 ( N - N k ) x N k  

we can use it to "invert" the channel in equation (III. 1.7) to obtain the equivalent 

expression 

'k,inv = = Skbky/Pk "J" (III. 1.9) 

desired signal interference + noise 

which can be used to obtain the decision variable for user fc's symbol by correlation 

with the corresponding transmit codeword 

bk = sjrk,inv = sjskbky/pi^ + sjD^wjt. (III.1.10) 

The average power for user fc's interference is 

i k  =  Sfc Dfc(D^)TSfc (III 1.11) 
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with the corresponding user k SINR being 

Pk 
Ifk = — • (III.1.12) 

We note that D£(D}.)T can be expressed as 

t  mt \ T  _  Di(Dl) 
Dfc-2 

0  N k x ( N - N k )  

Of ( . N - N k ) x N k  0 ( A r _ ^ f c ) x ( ^ _ j v * )  

(III.1.13) 

which induces the following partition on the transformed codeword vector s/t corre­

sponding to user k as 

s k 

, ( i )  

E(2) 
(III.1.14) 

where sj^ and s® are of dimension JV^xl and (N  — N^ )  x 1, respectively. Hence, 

we can rewrite the interference expression (III. 1.11) as 

i, - S(1)TD"2S(1) 
lk ~ °k Uk Sk 

The total interference power affecting all users' symbols is 

K  K  

(III.1.15) 

(III.1.16) 
k= 1 fc=l 

III.2 JOINT TRANSMITTER ADAPTATION AND POWER CON­

TROL AS A CONSTRAINED OPTIMIZATION PROBLEM 

With the base station transmitter having knowledge of all the user codewords, 

transmit powers, and channel matrices, it may obtain an optimal ensemble of code­

words and transmit powers that satisfy target SINR constraints by solving the con­

strained minimization of the sum of interference functions, that is 
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min X subject to 

S I , . . . , S K  

P I , - - , P K  

In order to solve this constrained optimization problem we use expres­

sion (III. 1.16) for the sum of interference functions and note that the unit norm 

constraint on the original codeword vectors sjsk = 1 can be translated in a unit 

norm constraint on s^, that is sj^ sj^ = 1, if the elements of are set to zero. 

This can be safely done as the N — Nk dimensions of user k channel correspond to 

zero singulaj values and any transmitted signal energy will be wasted on those dimen­

sions. Under this assumption we write the Lagrangian function for the constrained 

optimization problem (III.2.1) as 

IC JK 

i - z + E M r - i i l + E  W 3 »  ) T s » "  -
k=1 ^ k ' fc=1 

where A* and £* are Lagrange multipliers associated with the constraints in equa­

tion (III.2.1). The necessary conditions for minimizing the Lagrangian (III.2.2) are 

obtained by differentiating with respect to the corresponding variables, sj^, Pk, and 

multipliers A*, k = 1,..., K, and by equating the corresponding partial deriva­

tives to zero. Differentiating with respect to sj^ leads to the eigenvalue/eigenvector 

equation 

iL = 0 => DjH1'= mL" (1112.3) 
dsk 

We note that, since Djt is the diagonal matrix containing the non-zero singular matrix 

of Hfc as implied by its SVD in (III.1.5) and (III.1.6), its eigenvectors are canonical 

vectors with one element equal to 1 in the position of the corresponding eigenvalue 

7k = 7fc 
k  =  l , . . . ,K  (III.2.1) 

SFCS K = 1 
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and all the other elements equal to 0, and that their corresponding eigenvalues t/jc 

are equal to the inverse squared of the singular values of of H*. 

Differentiating now the Lagrangian (III.2.2) with respect to the multiplier Ak 

we obtain a second necessary condition for the constrained optimization problem 

(III.2.1) 

9Lk  Pk  * N  /TTT O /L\ 

ah  '  s<"tD;24" " 7* ~ ( " ' 

The two equations (III.2.3) and (III.2.4) implied by the necessary conditions of 

the optimization problem (III.2.1) indicate that the following (necessary) conditions 

must be satisfied at the optimal point: 

• Since sj^ is a canonical vector, will also be a similar canonical vector with 

(N — Nk) x 1 zeros appended to it, which implies that user k codeword, cal­

culated as Sk = VfcSfc, will correspond to a right singular vector of the channel 

matrix Hfc. 

• For a given sj^, the power value Pk matches the specified target SINR 7^, that 

i s  p k  = 7fcS i 1 ) T D^ 2 4 1 ) .  

Among all the right singular vectors of the channel matrix Hfc, the meaningful 

choice for the codeword s* is the right singular vector x* corresponding to the max­

imum singular value cr£ which implies that the corresponding = a*k~2 minimizes 

the term ik corresponding to user k in the sum interference function I, since this will 

require minimum transmit power for matching user k target SINR, that is 

Pfclsfc=xfc = 7fc^r2 k  =  l , . . . ,K  (III.2.5) 

Thus, a codeword matrix S whose columns s* are right singular vectors of 
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their corresponding channel matrices H* along with the power matrix P = 

diag[7i£7j-2,..., 7 *kct*^2], satisfies the necessary conditions (III.2.3)-(III.2.4) and cor­

responds to a stationary point of the constrained optimization problem (III.2.1). 

In order to investigate whether the Si and P satisfying (III.2.3)- (III.2.4) are also 

optimal with respect to the constrained optimization of the cost function (III.2.1), we 

apply the approach in [41, Ch. 5] that checks the second order optimality conditions 

based on evaluation of the bordered Hessian matrix at the critical point. For the 

Lagrangian expression (III.2.2), the bordered Hessian matrix is expressed as [41, Ch. 

5]. 
0 (2Kx2K)  

AT 
* * ( N K + K ) x 2 K  

A - 2 K x ( N K + K )  

C ( A r K + K ) x ( N K + K )  
(III.2.6) 

where the matrices A and C are given below 

-2Pi§i' 

0 

( i ) T  

C = 

2sf)T 

0 

Qi 

o 

-2p^s^)T 

1  • • •  0  

o  • • •  i  

0 
I 
!° . . .  o  

2 s£T {0 
i 

. . .  0  

0  i 0 .  
1 • 

• 0 

Q *  j o - • 0 

i 
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• 
1 o
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°
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• 0 

: i : 
o lo • • 0 

(III.2.7) 

(III.2.8) 

and Qfc = 2Dfc
2 - 2i /^I N k  Vk — 1, •  •  •  ,  K .  

At the optimal point of (III.2.1), the following conditions must be satisfied by the 
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bordered Hessian matrix: 

|Bm | > 0 ;  Vt  =  AK +  \ ,AK +  2, - - -  ,NK +  ZK,  (III.2.9) 

where is the ^-th principal determinant of the bordered Hessian matrix B/,. 

Thus, provided that (III.2.9) is verified, the matrices Si and P, satisfying (III.2.3)-

(III.2.4) are a solution of the constrained optimization problem (III.2.1). 

III.3 JOINT TRANSMITTER ADAPTATION AND POWER CON­

TROL ALGORITHM 

Based on the necessary conditions established in the previous section, we propose 

an iterative procedure that uses incremental updates for joint adaptation of the 

codeword and power matrices until an optimal solution is reached. At each step, 

one codeword vector is adapted in the direction of the right singular vector that 

corresponds to its maximum singular value, followed by an incremental update of its 

corresponding power toward the value that matches its corresponding target SINR 7^. 

This procedure is formally stated in Algorithm 4 and uses the following updates: 

• At step j  of the algorithm, column k  of the codeword matrix S is updated to: 

l l s f cO)  +  a(n ) /3x k ( j )  | |  

where x*(j) is the first right singular vector of H* corresponding to its max­

imum singular value, /? is a parameter that limits how far in terms of Eu­

c l id i an  d i s t ance  t he  upda ted  codeword  can  be  f rom the  o ld  one  and  a( j )  =  

sgn[sJ(j)XFC(j)]. This update results in a decrease of the interference function 

ik and an increase in user k SINR. 
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• Following the codeword update, the power value for user k is updated to: 

p k (n  +  1) = (1 -  f i )p k (n )  +  p .p ' k {n )  (III.3.2) 

where 

P 'kin) = 7fc*s k (n  +  l)TDt (Dl)Tsfc(n + 1), (III.3.3) 

and 0 < fj, < 1 is a suitable constant that defines the size of the power increment. 

This is a "lagged" power update in which the new power value is obtained as a 

combination of the current power pk{n) and the power p'k(n) required to meet 

the specified target SINR after its corresponding effective interference function 

has been reduced by the incremental codeword update (III.3.1). We note that, 

the smaller the p, constant is, the more pronounced the lag in the power update 

and the smaller the incremental power change will be. 

A similar iterative procedure but with different updates was used for joint trans­

mitter adaptation and power control in CDMA systems in [42] and its convergence to 

a fixed point is established using a game-theoretic framework, where the fixed point 

corresponds to a Nash equilibrium. In the context of the constrained optimization 

problem (III.2.1), the fixed point of the proposed procedure corresponds to a station­

ary point where the necessary conditions (III.2.3) and (III.2.4) are satisfied, while 

the optimal Nash equilibrium is implied by the solution of the optimization prob­

lem (III.2.1), which satisfies also the additional bordered Hessian condition (III.2.9). 

Numerically, a fixed point of Algorithm 4 is reached when the codeword and 

power updates result in changes of the sum interference function X that are smaller 

than the specified tolerance e. We note that, as it is the case with incremen­

tal/adaptive algorithms in general, the convergence speed of Algorithm 4 depends 
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Algorithm 4 - Joint Transmitter Adaptation and Power Control 

1 Input Data 

• Codeword and power matrices S, P, downlink channel matrices H*, target 
SINR values and noise covariance matrices Wfc, k  =  1,K .  

• Constants /?, /i, and tolerance e. 

2 Initialize iteration counter j  = 0. 
3 for each user k  =  1,K do 
4 Increment iteration counter j  =  j  +  1 
5 Apply the whitening transformation as shown in equation (III. 1.3) followed 

by the SVD in equation (III. 1.5) to obtain the equivalent problem in equa­
tion (III. 1.9). 

6 Update user k ' s  codeword using equation (III.3.1). 
7 Update user k ' s  power using equation (III.3.2). 
8 end for 
9 if change in sum interference function X is larger than specified tolerance e  then 

10 GO TO Step 8 
11 else 
12 STOP: a fixed point has been reached. 
13 end if 
14 if optimality condition (III.2.9) is true then 
15 STOP: an optimal solution has been reached. 
16 OUTPUT S(j) and P( j ) .  
17 else 
18 GO TO Step 8. 
19 end if 



on the values of the corresponding increments specified by the algorithm constants 

and /i, as well as by the value of the tolerance e. 

In order to illustrate the proposed algorithm we consider a downlink wireless 

system with N = 10 transmit antennas at the base station, K = 5 active users with 

Nk = 4 antennas each and white noise with covariance matrix Wk = O.II4 at all 

receivers. The power matrix is initialized to P = O.II5 while the codeword matrix 

S and the user channel matrices are initialized randomly. The algorithm parameters 

are set to /? = 0.02, /i = 0.01, tolerance e = 0.02 and the target SINRs are initialized 

to 7* = {5,4,3,2,1}. 

In the first experiment we simulate the algorithm for fixed number of active users 

with variable target SINRs. Once the codewords and powers that meet the specified 

targets are obtained using the proposed algorithm, user 5 increases its target SINR 

from 1 to 2.5. As a result of this change the algorithm starts updating user codewords 

and powers until a new fixed point that meets the new specified set of target SINRs 

is reached, when user 5 decreases target SINR to 1.75 and initiates new updates for 

codewords and power. The algorithm adjusts their values until a new fixed point is 

reached where the target SINRs are once again met for all users. The variation of 

user SINRs and powers for this experiment are plotted in Figure 4 from which we 

note that each time a change in the target SINR of user 5 occurs there is a sharp 

change in all the user's SINR and power values which is then compensated by the 

algorithm. 

In the second experiment we start from the same initializations as before (includ­

ing the same initial target SINRs), but after convergence to the fixed point where 

specified target SINRs are met, user 5 becomes inactive. Its corresponding codeword 



39 

£ 
(0 

0.5 
Updates .4 

x 10 

(a) SINR variation 

0.8 
userl 

0.7 • «user3 
• •1 user4 
*—user5 0.6 

0.5 

2 0.4 

0.3 

0.5 1.5 
Updates .4 x10 

(b) Power variation 

FIG. 4: Variation of user SINRs and powers for the variable SINR tracking example. 
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FIG. 5: Variation of user SINRs and powers for variable number of active users in 
the system. 
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and power are dropped from S and P matrices which determines the algorithm to up­

date the codewords and powers for remaining users until a new fixed point is reached 

where the target SINRs of active users 7* = {5,4,3,2} are satisfied. Then, a new 

user becomes active in the system and its (randomly initialized) codeword and power 

are added to the S and P matrices under new user 5 with new target SINR equal 

to 0.5. This determines the algorithm to update again all codewords and powers 

until a new fixed point is reached where the target SINRs for all users are satisfied. 

The variation of user SINRs and powers for this experiment are plotted in Figure 5 

from where we note that, similar to the previous experiment, each time a change in 

the number of active users in the system occurs there is a sharp change in all active 

user's SINR and power values which is compensated by the proposed algorithm. 

In order to evaluate the convergence speed of the proposed algorithm for joint 

transmitter adaptation and power control we performed numerous simulations over 

various scenarios. In the simulation experiments performed, we selected specific 

values for K, N and iVfc; for the algorithm increment constants (3 and yn, and for the 

tolerance e, we generate a set of channel matrices, and for each selection we ran 100 

trials of the algorithm recording the number of iterations j needed for convergence 

within the specified tolerance e when starting with randomly initialized codeword 

and power matrices. We note that the actual number of iterations depends on K as 

one update of the codeword and power matrices S and P consist of K iterations of 

the FOR loop: 3 in Algorithm 4. Thus, for better visualization of the convergence 

speed results we will look at the average number of updates of the codeword and 

power matrices until convergence rather than the average number of actual iterations 

j] that is, we will show the number of codeword and power matrices updates j/K in 



our plots. 

In the third experiment we studied the convergence speed for different values 

of the increment constants 0 and /x and varying K and N. The results of this 

experiment are plotted in Fig. 6, where we note that convergence speed is affected 

mostly by changes in the value of /i and that it does not depend significantly on the 

value of /?. We also note that for algorithm constants (3 = 0.2 and \x = 0.1, the 

optimal equilibrium is reached in an average number of fewer than 25 updates in all 

considered scenarios. 

In the fourth experiment we studied the dependence of convergence speed on the 

algorithm tolerance e for fixed values for K, N, Nk, and /? as shown in Fig. 7. It 

can be observed that the lower the value of e, the longer it takes for Algorithm 4 to 

reach the optimal fixed point. This result was expected considering the fact that a 

smaller e implies a higher precision for the fixed-point, which, with fixed increments 

will be reached through an increased number of updates. 

In the fifth experiment we studied the convergence speed of the algorithm for 

increasing number of antennas in the system Nr = Ylk=i and N such that the 

ratio Nr/N stays constant which is shown in Fig. 8, from which we note that the 

average number of updates needed for convergence does not significantly change for 

the ratio Nr/N = 1; however for higher values of the ratio, we notice an increase in 

the  ave rage  number  o f  codeword  upda te s  w i th  inc reas ing  N.  
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III.4 SINK AND MMSE EXPRESSIONS WITH LINEAR PRE-

CODERS IN THE DOWNLINK SYSTEM MODEL 

We consider the downlink of a wireless system with a system model similar to 

that in section 1.2 but with a single transmitter and K receivers for which the N-

dimensional signal vector from the base station transmitter is expressed as the sum 

of individual transmitted signals in equation (1.2.1) and is given by 

K MK K 

* = E E «>v^" = E s*p^. 
fc=1 m=1 A=1 

and the TV-dimensional received signal by a given user k is 

rk = H*x + nfc = H* ̂  S,P]/2b^ + nfc. (III.4.2) 

We note that each user k has a precoder matrix S/t when compared to the sys­

tem model in Section III.l where each user has a codeword vector sk- In order 

to decode the information symbols intended for it a given user k employs a bank 

of MMSE receiver filters such that its corresponding vector of decision variables 

dk = [4fc) • • • dS£]T is 

dfc = Clrk 

= (R^HfcSfcP^2)1" xrfc ' k=1>--->K (III.4.3) 

MMSE receiver [43] 

where 

Rfc = E[rkrr
k  ] = Hfc ^ S,P,Sj j HJ + Wk (III.4.4) 

is the correlation matrix of the received signal in (III.4.2). We note that the 

MMSE receiver corresponding to an individual symbol m of user k, bm\ is Cm) = 
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i-'h. o(fc). / j~ k )  R^sE'v / Pm and can also be written in the following form 

(*) 

C"-t^-'H^)
1+A>),.4^,]--Htsg, (IIIA5) 

where Ri^ is the correlation matrix of the interference+noise which affects m-th 

decision variable of user k 

Rg>=R»-p£>Ht!ay»THj. (III.4.6) 

The SINR for symbol m of user k is 

7m 
(fc) _ 

1 — Pm)Sm)THjR^1HfeSm) 

(III.4.7) 

and the corresponding MMSE expression is 

£™ = HiE) = l-PmS^HjR^HfcS^ 
1 + ~ym 

1 
(III.4.8) 

1 + P^^H^Rj^-iH^' 

Our goal in this setup is to formulate an algorithm for joint adaptation of the 

precoder and power matrices of all users such that the SINR value for all symbols of 

a  g i v e n  u s e r  k  i s  e q u a l  t o  a  s p e c i f i e d  t a r g e t  S I N R  y £ ,  f o r  a l l  k  =  1 , . . . ,  K .  

III.5 JOINT PRECODER ADAPTATION AND POWER CONTROL 

AS A CONSTRAINED OPTIMIZATION PROBLEM 

In order to formulate joint precoder adaptation and power control as a constrained 

optimization problem we must choose a suitable criterion (or cost function) to be 

optimized when the downlink transmitter updates the precoder and power matrices. 
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In the context of the MMSE receivers we choose this cost function to be the sum of 

MMSE errors corresponding to all symbols of all users; that is, 

K  M k  

^ = ( I IL51) 

fc=l m=l 

Using the MMSE expression (III.4.8) this can be rewritten as 

k  mk 

U = S £ I+pS^hiirS'I-'H^'' (III'5'2) 

and we note that, while the transmitter does not have access to the actual MMSE 

errors which are computed at the user receivers, it does have knowledge of all the 

user precoder and transmit power matrices S*, P*, VA;. In addition, we assume that 

the transmitter has knowledge of the downlink channels H* and of the received signal 

correlation matrices through a feedback channel [44,45] so that it is able to easily 

determine the cost function using expression (III.5.2). Thus, we formally define the 

joint precoder adaptation and power control in terms of the following constrained 

optimization problem: 

' p£>sm THfc Ri?"'His!? = 7;, 

s<«TsL" = 1. 

min U subject to < 
S k , P k  

(III.5.3) 
m  =  1 , . . . ,  M k ,  k  —  1 , . . . ,  K  

K  

^ Trace [Pfc] < Pmax. 
k=1 

We note that formal constraints in (III.5.3) are implied by the target SINR values 7^ 

specified for all users in the system, as well as by the unit norm constraints imposed 

on columns of the precoder matrices and the average power constraint of the downlink 

transmitter. 
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In order to solve the constrained optimization problem (III.5.3) we use the La­

grange multipliers method [41, Ch. 5] and define the corresponding Lagrangian func­

tion 

K MK 

1 = U + E E <£' W s»THj - it) 

k  / K mi,  \ C"-5'4) 

+E E d'WX"-i) + i>k-EE'd 
k=l m=l \  k= 1 m—1 )  

We note that L  is a function of the M k  columns of user k  precoder matrix ,..., , 

powers pf\ • • • and multipliers Ci*0, • • •, Cj£. d*0.-- and P associated 

with the constraints in equation (III.5.3). The necessary conditions for minimizing 

the Lagrangian are as follows: 

O T" 

= 0, k  =  1 , . . . ,  K \  m  = 1,..., M k  (III.5.5) 

d L  

dpm fl? 
d L  

d(m 

d L  

= 0, k  =  1 , . . .  , K ; m  =  1 , . . .  , M k  (III.5.6) 

_ = 0, k  =  l , . . . , K ; m  =  l , . . . , M k  (III.5.7) 

d$n 
0, k  =  l , . . . , K ; m  =  l , . . . , M k  (III.5.8) 

> 0. (III.5.9) 

(k) 

d L  
d p  

To these one must add the complementary slackness condition 

/ k Mk \ 
P E>™ ) = 0 (III.5.10) 

\  fc=l m=l /  

which is needed in the case of inequality constraints to ensure that, at the optimum 

point, the Lagrangian and the original cost function have the same value. 
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Condition (III.5.5) leads to the eigenvalue/eigenvector equation 

d L  
rv (Ac) "• J " "* IN 11* 

(III.5.11) 
k  =  1  , . . . , K ; m =  1  

where the corresponding eigenvalue A™' can be written in terms of the Lagrange 

multipliers £m\ the user power pm\ and the corresponding MMSE Fur­

thermore, condition (III.5.7) implies 

dL -0  

= 0 =» Hl[Rg'l-1H»8g' = A2)^) 

sS'THj|Ra)]-.H^' (HI.5.12) 

k  =  1 , . . . ,  K \ m  =  1 , . . .  , M k .  

The two equations (III.5.11) and (III.5.12) implied by the necessary conditions 

of the constrained optimization problem (III.5.3) indicate that, at the optimal point, 

user k precoder and power matrices satisfy the following (necessary) conditions: 

• Any column m  of user k  precoder matrix, is an eigenvector of corresponding 

matrix Hj [Ri^]-1Hfc. 

• For the given the power value corresponding to symbol m of user k, pm\ 

matches the specified target SINR 7^. 

We note that, among all possible eigenvectors of matrix [R^^]_1Hfc the meaningful 

choice for is the eigenvector corresponding to its maximum eigenvalue1 Am* 

since, according to the SIR expression (III.4.7), this will require minimum transmit 

power for matching the specified target SINR 

= w (ni.5.13) 
°m — Ai 

1This is also referred to it as the maximum eigenvector. 
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Furthermore, using equation (III.4.6) along with the SIR expression in terms of 

Rfc1 in equation (III.4.7), we note that, with this choice of power, the maximum 

eigenvector x„ of Hj [Rj^]-1Hfc matrix is also an eigenvector of the HjRfe
1Hfc 

matrix, satisfying 

T n - i w . - v W  —  i k  „(k)  
0  1 + Tfc' 

(III.5.14) 

TV™ A I 

( \ L\ 
Since phi is the minimum transmit power required to match the specified target Vm, 

(k \  
we have that Xm is the eigenvector corresponding to the maximum eigenvalue Vk of 

matrix HjR^ m = 1,..., Mk, which in turn implies that the power values for 

all symbols of user k will be identical at the optimal point 

=  m  =  l , . . . , M k .  (III.5.15) 
Vk 1 + 7 

Thus, an ensemble of precoder and power matrices where all columns of a 

given user precoder are maximum eigenvectors of their corresponding matrices 

HjR^Hfc, m = 1,..., Mfc and user k power matrix is a scaled identity matrix 

Pfc = Mk (III.5.16) 
^ 1 + 7fc 

with i>k being the maximum eigenvalue of matrix H^R^H*, satisfies the necessary 

conditions (III.5.11) and (III.5.12) and is a stationary point of the constrained op­

timization problem (III.5.3). Since at this point the SINRs for all Mk symbols of a 

user k are equal, this implies that all their corresponding MMSEs are also equal and 

given by 

^ = 7-^, m = 1,..., Mk (III.5.17) 
1 + 
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which in turn implies that the value of the cost function at this point is 

(111.5.18) 

Due to the one-to-one relationship (III.4.8) between SINR and MMSE values when 

MMSE receivers are used [43] we note that the value U in (III.5.18) is also the min­

imum value of the cost function U given the target SINR values 7^. This indicates 

that this stationary point is in fact the optimal point of the constrained optimization 

problem (III.5.3) where the cost function is minimized subject to the specified con­

straints and can also be verified using the second order optimality conditions based 

on the bordered Hessian matrix similar to the uplink wireless system in Section IV.2. 

III.6 JOINT PRECODER ADAPTATION AND POWER CONTROL 

ALGORITHM 

Necessary conditions (III.5.11) and (III.5.12) suggest potential updates for user 

k  p r e c o d e r  a n d  p o w e r  m a t r i c e s :  a t  s o m e  g i v e n  i n s t a n t  r e p l a c e  c o l u m n  m  o f  u s e r  k  

precoder, sm\ by the eigenvector x® corresponding to maximum eigenvalue Am' of 

matrix HjRj^-1Hfc followed by updating the corresponding power to the new value 

impled by (III.5.12). These potential updates may result in steep changes in the 

transmitter that may not be tracked by the receiver and could result in increased 

probability of error or even connection loss between the base station transmitter and 

user k receiver (outage); in order to avoid that we use incremental updates where s™ 

is updated in the direction of the desired maximum eigenvector x„ by the equation 

|sw(n) + aftx-m (n)\ 



where a(n) = sgn[s^T(n) • Xm (n)], and fH is a parameter that defines the increment 

size by limiting how far, in terms of Euclidian distance, the updated precoder column 

is from the old one. Upon adaptation of sjj' the corresponding SINR (III.4.7) is 

increased, and the required power value according to (III.5.12) becomes 

pW'(n) = -Tzw 7£ m . (III.6.2) 
sL (n+l)HJJ"[RL)(n)]-1HfcsL)(n+1) 

Since the value p$ (n) may not be close to the current power value pm\n) and in 

order to avoid abrupt power variations we apply a "lagged" power update given by 

P m ( n  + !) = pm\n)  + ~ Pm(n)l (III.6.3) 

with 0 < fj, < 1 a suitably chosen constant defining the size of the power increment. 

This updates the power value corresponding to symbol m of user A; to a new value 

which is a combination of the current power p£) (n) and the power pm® (n) required 

to meet the specified constraint after the incremental codeword update (III.6.1). We 

note that the smaller the /j, constant, the smaller the incremental power change, and 

the power will always be updated toward the value needed to match the target SINR 

(that is, if the power value p"m (n) needed to match the target SINR is lower than 

the current power then the power will be decreased and vice versa). 

We note that, empirically, we have observed that the incremental updates implied 

by equations (III.6.1)-(III.6.3) result in a monotonic decrease of the cost function U, 

that is 

U { n ) > U ( n + 1). (III.6.4) 

This observation in conjunction with the fact that 

U { n )  > U  Vra, (III.6.5) 
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Algorithm 5 - Joint Precoder Adaptation and Power Control Algorithm for Multi-
User Downlink Scenario 

1: Input Data 

• Precoder and power matrices St, Pjt, downlink channel matrices Hjt, target 
S I N R  v a l u e s  7 ^ ,  a n d  n o i s e  c o v a r i a n c e  m a t r i c e s  W * ,  k  =  1 , . . . ,  K .  

• Constants /3, /x, and tolerance e .  

2: for each user precoder matrix k  =  1,K  do 
3: for each column m  —  1,..., M k  of user k  precoder matrix do 
4: Compute corresponding Hj[Ri^ using equation (III.4.6) and de­

fied termine its maximum eigenvector xj,'. 
5: Update column m  of user k  precoder using equation (III.6.1). 
6: Update transmit power for symbol m of user k using equation (III.6.3). 
7: end for 
8: end for 
9: if change in the cost function U  is larger than specified tolerance e then 

10: GO TO Step 2 
11: else 
12: STOP: a fixed point has been reached. 
13: end if 
14: if the cost function U  is larger than the lower bound in (III.6.5) then 
15: GO TO Step (2) for further iterations 
16: else 
17: STOP:an optimal point has been reached. 
18: end if 

implies that iterative application of the updates (III.6.1)—(III.6.3) is guaranteed to 

converge to a fixed point as formally stated in Algorithm 5 

Extensive simulations have confirmed that it always converges to the optimal 

point where the cost function is equal to the lower bound in equation (III.5.18). 

We present results obtained from simulations of Algorithm 5 for a system with 

K = 2 active users in a signal space of dimension N = 6 and blocks lengths Mi = 

M2 = 6. The precoder and power matrices, S* and P/t (VA = 1,2), are initialized 

randomly, and white noise with the same covariance matrix Wj = W2 = 0.116 is 



54 

User 1 

User 2 

1000 
Updates 

(a) SINR variation 

1500 2000 

1500 2000 

(b) Power variation 

FIG. 9: Variation of symbol SINRs and powers for one run of the proposed algorithm 
from random initialization. 
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FIG. 10: Variation of transmitter cost function for one run of the proposed algorithm 
from random initialization. 

considered. The algorithm parameters are set to /j = 0.1, j 3  = 0.2, and e = 0.001, 

and the user target SINRs are initialized to yt = 0.8 and 73 = 0.5. The channel 

matrices are chosen to be circulant and are also initialized randomly. 

The variation of the user SINRs and powers for this example are plotted in Fig­

ures 9(a) and (b), and the variation of the cost function for this example is plotted 

in Figure 10. We note the monotonic decrease of the cost function to its lower bound 

U which in this case is found to be equal to 7.33. 

Convergence of the proposed algorithm for several values of the algorithm con­

s tants /? and /i are plotted in Figure 11(a), and it can be observed that the (3 and 

H variations closely follow each other. Convergence for varying signal dimensions 

n and block lengths Mi and mi are plotted in Figure 11(b), and it is seen that 
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FIG. 11: Average number of iterations for convergence of the proposed algorithm 
100 trials. 
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the average number of ensemble iterations needed for convergence within tolerance 

e = 0.001 does not vary significantly for increasing n and + M2. 

III.7 CHAPTER SUMMARY 

In this chapter we studied the problem of joint transmitter adaptation and power 

control for downlink wireless systems with multiple users that operate with specified 

target SINR values. This problem is cast as a constrained optimization problem for 

which necessary and sufficient conditions for the optimal solution are identified. A 

new algorithm for joint transmitter adaptation and power control in downlink wireless 

systems is also presented in the paper. The proposed algorithm uses incremental 

updates for the codeword and power matrices which result in optimal values for 

these matrices for which the specified target SINR values are achieved with minimum 

transmitted power, and it can be used for tracking changing target SINRs and/or 

variable number of active users. Convergence of the proposed algorithm is studied 

numerically through simulations over various scenarios. 

We also investigated joint precoder adaptation and power control in downlink 

wireless systems with target values imposed on the SINRs at the receiver terminals. 

Using a general framework based on block transmissions and linear precoders, we 

formulated this as a constrained optimization problem and discussed the conditions 

that must be satisfied by the optimal solution. We also proposed an incremental 

algorithm for joint updates of the transmit precoder and power matrices which we 

illustrated with numerical results obtained from simulations. 
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JOINT TRANSMITTER ADAPTATION AND POWER 

CONTROL IN UPLINK WIRELESS SYSTEMS 

In this chapter we study transmitter adaptation in multi-user wireless systems 

in a general framework which assumes that block transmission is used for sending 

information by active transmitters and is applicable to most current transmission 

schemes including CDMA, OFDM, and MIMO systems. Specifically, we formulate 

the problem of joint transmitter adaptation and power control subject to target SINR 

requirements as a constrained optimization problem in which the transmit precoder 

and power matrices are jointly optimized subject to specific mathematical constraints 

implied by constraints on the precoder matrices and by the desired target SINRs. 

We also present an incremental algorithm that jointly adapts transmitter precoders 

and power values in a distributed fashion until a fixed point is reached where the 

specified target SINRs are achieved with minimum transmitted power. Convergence 

of the algorithm is illustrated using simulation results followed by an application of 

the proposed algorithm in Cognitive Radio Networks. 

IV. 1 UPLINK SYSTEM MODEL 

We consider the uplink of a wireless system with a system model as defined in 

Section 1.2 with K active transmitters and a single base station receiver such that 

the iV-dimensional vector transmitted by a given user k is given by equation (1.2.1) 

and the iV-dimensional received signal vector at the receiver corresponding to one 
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signalling interval is given by the expression 

K 
r = £HfcS*P*/2bfc + n. (IV.1.1) 

A:=l 

We rewrite the received signal in (IV.1.1) from the perspective of the m-th symbol 

of user k as 

j  A/fc / k  
r = b%)HkSM^p£) + J2 + J2 HAP;/2b, + n. (IV.1.2) 

n=l,n/m 
> v < 

interference + noise = im^ 

The first term is the desired signal corresponding to symbol m  of user k ,  and the 

remaining terms represent the interference and noise corrupting it at the receiver 

with correlation matrix 

= -E[i<;»i£»T] = R - (IV.1.3) 

where 
K 

R = E[ t t t ]  =  ̂ HfcSfcPfcS,THj + W (IV.1.4) 
fc=i 

is the correlation matrix of the received signal in (IV.1.2). 

In order to decode the information transmitted by a given user k ,  the receiver 

uses a bank of MMSE receiver filters such that the vector of decision variables d* = 

[d[k^... d$k]T f°r a given user k is obtained as [43] 

dfc = CT x r (IV.1.5) 

where C = R^HjfeSfcPj^2 is the matrix corresponding to the bank of MMSE receiver 

filters. The expression of the MMSE receiver for the m-th symbol of the k-th user is 
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given by 

w (IV-L6) 
= Rm)_1Hfcs^ <Pm 

Using expression (IV. 1.6) of the individual receiver filter we get expressions of its 

corresponding SINR [43] 

(fc) _ p8?s^)TH^R-1Hfcs^) 

7n 

and MMSE 

1 -p&^hjr -wksw 

1 +7m 

(IV.1.7) 

(IV.1.8) 

1 + Pm)Sm)THjRi^)_1HfcSOT) 

Our goal in this setup is to derive an algorithm by which individual users adjust 

their corresponding precoding matrices and powers such that the SINR value for all 

symbols of a given user k  is equal to a specified target SINR 7^, for all k  =  1 , . . . ,  K ,  

that satisfies the admissibility condition [43] 

K 
Mk—-

a-I 1 + ^ 

K \ 
< N .  (IV. 1.9) 

f - f  1  +  i t  

IV.2 JOINT PRECODER ADAPTATION AND POWER CONTROL 

AS A CONSTRAINED OPTIMIZATION PROBLEM 

To formulate the transmitter adaptation and power control problem as a dis­

tributed constrained optimization problem we use the total MMSE corresponding to 
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Sfc.Pfc 
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a given user k  as its cost function 

Affc A/* ^ 
U k  = Y" EFF = Y SNIFF —— (IV.2.1) 

and we formally define the joint precoder and power adaptation problem for the given 

user k subject to the specified target SIR constraints as 

= 72, 

s ^  =  l , m  =  l , . . . , M k  (IV.2.2) 

Trace [Pfc] < Pfc
max. 

In order to solve this constrained optimization problem we use the Lagrange 

multipliers method [41, Ch. 5] and define the corresponding Lagrangian function. 

M k  

Lk = Uk + £ (W (pWs^HlRm-'HisW _ 7j) 

m, m=1 , M. \ <IV2-3> 
+ E e2>(s£)T»S) -1) + p (pf - I • 

rra=l \  m=l /  

We note that Lk is a function of the Mk columns of user k  precoder matrix 

s(i*°, • • •, B{Sk, powers p[k),..., p(^k, and multipliers CiW, • • •, Cj£, d*0 , • • •» . and 

p associated with the constraints in equation (IV.2.2). The necessary conditions for 

minimizing the Lagrangian are as follows: 

r \  r 

- ^  =  0, m  =  l , . . . , M k  (IV.2.4) 
C/Sm 

d L  

dpm ik) 

dLk 

*  = 0 ,  m  =  l , . . . , M k  (IV.2.5) 

dcw 

dLk 

=  0 ,  m  =  1 , . . . ,  M k  (IV.2.6) 

( f c )  =  0 ,  m =  1 , . . . ,  Mk (TV.2.7) 
m 
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dLk > 0. (IV.2.8) 
d p  

To these one must add the complementary slackness condition 

p (vr - £>£') =0 (IV-2-9) 

which is needed in the case of inequality constraints to ensure that at the optimum 

point the Lagrangian and the original cost function have the same value. 

Condition (IV.2.4) leads to the eigenvalue/eigenvector equation 

dLk 
r. (fc) n. >•* — *>« 

(IV.2.10) 
m  =  l , . . . , M k  

where the corresponding eigenvalue Acan be written in terms of the Lagrange 

multipliers £m\ £m\ the user power pm\ and the corresponding MMSE £$. 

Furthermore, condition (IV.2.6) implies 

dL* - 0 => 

= 0 => HjRS'-'Hrf = Afi'tg' 

d£> (IV.2.11) 

m  =  1  

The two equations (IV.2.10) and (IV.2.11) implied by the necessary conditions of 

the constrained optimization problem (IV.2.2) indicate that, at the optimal point, 

user k precoder and power matrices satisfy the following (necessary) conditions: 

• Any column m  of user k  precoder matrix, s^\ is an eigenvector of corresponding 

matrix 

• For the given the power value corresponding to symbol m of user k, pm\ 

matches the specified target SINR 7j*. 
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We note that, among all possible eigenvectors of matrix HjRj^-1Hfc the meaningful 

choice for is the eigenvector x„ corresponding to its maximum eigenvalue1 Am\ 

since, according to the SIR expression (IV.1.7), this will require minimum transmit 

power for matching the specified target SINR 

=  m- < I V - 2 1 2 >  

am 

Furthermore, using equation (IV. 1.3) along with the SINR expression in terms of 

R1 in equation (IV. 1.7), we also have that, with this choice of power, the maximum 

eigenvector of matrix is also an eigenvector the HjR-1Hk matrix, 

satisfying 

HlR^Htx^ = - x(fc) 

* 0 i + r ' 
m 5 

(IV.2.13) 

m = 1, . . . ,  m k .  

Noting that the power value is the minimum power needed to match the specified 

target, this implies that x„ corresponds actually to the maximum eigenvalue P* of 

matrix HjR_1Hfc. As a consequence, an ensemble where all columns of a given user 

precoder are maximum eigenvectors of their corresponding matrices Hj Rj^_1Hfc, 

m = 1,..., Mk and user k power matrix is a scaled identity matrix 

" 1 7" (IV.2.14) 
Vk 1 + 7 

with i>k being the maximum eigenvalue of matrix Hj R_1Hfc, satisfies the necessary 

conditions (IV.2.10) and (IV.2.11) and is a stationary point of the constrained opti­

mization problem (IV.2.2). We note that, in addition to all SINRs of user k being 

1We also refer to it as the maximum eigenvector. 
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achieved with minimum power, at this stationary point all MMSE values correspond­

ing to all user k symbols are equal to 

dk)  = 
°m - ,  m  =  l , . . . , M k  

1 + 7** 

which in turn implies that the value of the user k  cost function at this point is 

M k  

(IV.2.15) 

U k  (IV.2.16) 
1 + 71 

and corresponds to the minimum value of the user k  cost function for the given target 

SINR constraint. 

In order to decide whether the Sfc and satisfying (IV.2.10)-(IV.2.11) are also 

optimal with respect to the constrained optimization of the cost function (IV.2.2), we 

apply the approach in [41, Ch. 5] that checks the second order optimality conditions 

based on evaluation of the bordered Hessian matrix at the critical point. For the 

Lagrangian expression (IV.2.3), the bordered Hessian matrix is expressed as [41, Ch. 

5] 

B(" = 0 ( 2 M k x 2 M k )  A(fe) 
* - ( 2 M k + l ) y . ( N M k + M k )  

A ( f c ) T  
A ( N M k + M k ) x ( 2 M k + l )  

p(*) 
( N  M k + M k ) x ( N  M k + M k )  

(IV.2.17) 

where the matrices A and C are given below 

A<fc> = 

to
 

01
 

*•"
5?

 

• 
o
 

• • 0 

• • 
o
 • 27jssr 

•• 
o
 

\ (k )  

2s[ k ) t  •  • 0 

1 
• 

1 
1 

o
 

• 
1 1 

• 
i 

• 
°
 

i l ] 

0 • • 2s(fc)T 0 • • 0 

O
 • 

O
 -1 • • -1 

(IV.2.18) 
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_ /  _  \  f t  
Cj • • • 0 Cj • • • 0 

c ( fc )  
o • • • cMk i o cMk 

(IV.2.19) 
(C;')T... o o 

~ y " v T » ^ If* 
0 " • (cMk) J 0 • ' • cMk 

where the block elements in (IV.2.19) are given by 

( k ) J k ) 3 ( k )  

(fc)2=(fc)3 

,*2aw(k)<k) t  

(IV.2.20) 

for all m  =  1 , . . . ,  M k .  

Details on the derivation of the bordered Hessian matrix (IV.2.17) and of its block 

matrices (IV.2.18)-(IV.2.19) are presented in the appendix. 

We note that, at the optimal point of the constrained optimization prob­

lem (IV.2.2), the following conditions must be satisfied by the bordered Hessian 

matrix [41, Ch. 5]: 

where |B^| is the £-th principal determinant of the bordered Hessian matrix B/,. 

Thus, provided that (IV.2.21) is verified, the matrices S* and P*, satisfying (IV.2.10)-

(IV.2.11) are a solution of the constrained optimization problem (IV.2.2). 

(_l)(2Mfc+X)|Bv| > 0 

(IV.2.21) 

for t = (4Mk + 3), (4Mk + 4), • • • , Mk(N + 3) + 1, 
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IV.3 JOINT PRECODER ADAPTATION AND POWER CONTROL 

ALGORITHM 

Using the necessary conditions established in the previous section we propose an 

iterative procedure that uses incremental updates for joint adaptation of the precoder 

and power matrices of all active users in the system until the optimal ensemble of 

precoder and power matrices is reached. At each step, the procedure incrementally 

updates one column m of a precoder matrix k in the direction of the maximum 

eigenvector of its corresponding H^R^"-1!!* matrix, followed by an incremental 

update of its associated transmit power toward the value that matches its target 

iting how far, in terms of Euclidian distance, the updated precoder column is from 

the old one. 

After the precoder update (IV.3.1) we use equation (IV.2.11) to obtain the power 

value needed to match the target SINR 

SINR 7*. 

At a given update step n ,  precoder column s™ is updated as follows: 

_(*)/_ , n = sffi(n) + a{n)l3x%\n) 
m lls^n) + a:(n)/?Xm^(n)| 

(IV.3.1) 

where Xm is the maximum eigenvector of matrix [Rj^(rt)] 'H^, ct(rc) = 

sgn[sm^T(rc)xm^(ra)], and /3 is a parameter that defines the increment size by lim-

p^\n)  = 
Sm)T(n + l)Hj [Rm vn)]-1Hfcs^)(n+ 1)' 

(IV.3.2) 

and we update the transmit power p m  as follows: 

P m ( n  +  ! )  =  Pmi.n) + tAPm'(n) ~ P m W I  (IV.3.3) 
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with 0 < n < 1 a suitably chosen constant defining the size of the power increment. 

We note that, the smaller the fi constant, the smaller the incremental power change, 

and that the power will always be updated toward the value needed to match the 

target SINR (that is, if the power value p$ (n) needed to match the target SINR is 

lower than the current power then the power will be decreased and vice versa). 

We have empirically observed that the incremental updates implied by equations 

(IV.3.1)-(IV.3.3) result in a monotonic decrease of the sum of all user cost functions 

K K MK 
w = = (rv-3-4) 

k=l k= l  m=l 

That is, the difference between U ( n ) before step n  updates (IV.3.1)-(IV.3.3) are 

applied and U(n+ 1) after the updates is always non-negative 

AU = U(n) - U ( n  + 1) > 0. (IV.3.5) 

Thus, given the constrained minima of uk  in (IV.2.16), and that according to [46] ia  

is lower bounded, we have that 

K 
U ( n )  >  U  = X>. (IV.3.6) 

fc=i 

which implies that we can use the global cost function U as a formal stopping criterion 

in Algorithm 6. Thus, a fixed point of the algorithm is reached when the updates 

result in changes of the cost function that are smaller than the specified tolerance 

e, and the check of the bordered Hessian sufficient condition (IV.2.21) in Line 26 of 

Algorithm 6 guarantees that iterations will not stop in a suboptimal point and will 

reach the optimal point discussed in the previous section. 

Extensive simulations of Algorithm 6 have confirmed that it always converges to 

the optimal point where the global cost function is equal to the tight lower bound in 
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Algorithm 6 - Joint Precoder Adaptation and Power Control in Uplink Wireless 
Systems 

1: Input Data 

• Initial precoder and power matrices S*, Pt, for all active users k  =  1,. . . ,  K .  
• Corresponding channel matrices H* and desired target SINR values -y£, for 

k  =  l , . . . , K .  

• Noise covariance matrix at the receiver W. 

• Algorithm constants j3, fi, and tolerance e. 

2: if admissibility condition in equation (IV. 1.9) is satisfied then 
3: GO TO Step 8. 
4: else 
5: STOP: desired system configuration is not admissible. 
6: end if 
7: Initialize iteration counter n  =  0. 
8: for each user k = 1,..., K do 
9 :  I n crement iteration counter n = n + 1 

10: for each column m = 1,..., M>. of, .user k precoder matrix do 
11: Compute corresponding Hj[RL (n)]_1Hfc using equation (IV. 1.3) and de-

( k )  
termine its maximum eigenvector Xm . 

12: Update column m  of user k  precoder using equation (IV.3.1). 
13: Update transmit power for symbol m of CR transmitter k using equa­

tion (IV.3.3). 
14: end for 
15: end for 
16: if change in global cost function U is larger than specified tolerance e then 
17: GO TO Step (8) 
18: else 
19: STOP: a fixed point has been reached. 
20: end if 
21: if global cost function U  is larger than the tight lower bound in (IV.3.6) then 
22: GO TO Step (8) 
23: else 
24: STOP: a sub-optimal fixed point has been reached. 
25: end if 
26: if optimality condition (IV.2.21) is true then 
27: STOP, an optimal point has been reached. 
28: OUTPUT S(n) and P(n). 

30: elGO TO Step (8) 
31: end if 
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(IV.3.6), and all individual user cost functions are minimized subject to the specified 

constraints as discussed in Section IV. 2. An analytical proof of convergence is cur­

rently under investigation. We note that, as it is the case with incremental/adaptive 

algorithms in general, the convergence speed of the algorithm depends on the values 

of the corresponding increments specified by the algorithm constants /3 and fi, and 

that the smaller these values the slower the algorithm convergence. 

We present numerical results obtained using Algorithm 6 which show the vari­

ation of user powers, SINRs, and cost functions, and support its convergence. 

We consider a wireless system with K  = 2 active users in a signal space of 

dimension N = 6 transmitting blocks of size M\ = M2 = 6 symbols and target 

SINRS 71 = {0.8,0.5}. The user channel matrices are taken to be circulant, and 

the background noise covariance matrix is W = O.lle- The algorithm parameters 

are set to fj, = 0.1, 0 = 0.2 e = 0.001 Codeword and Power matrices: S* and 

Pk (VAr = 1 are initialized randomly, and white noise is considered with 

covariance matrix W = 0.116-

In the first experiment, variations of user SINRs and powers are plotted in Fig­

ure 12. This confirms that all symbols of a given user have the same transmitted 

power and meet the specified target SINRs. 

In the second experiment we plotted the variation of individual and global cost 

functions for the same example as seen in Figure 13. We note that this shows the 

monotonic decrease of the global cost function U to the lower bound (IV.3.6) whose 

value is 7.33 for this example. We also note that Figures 12 and 13 are typical for all 

simulations we have run, with various values for N, K, Mk, and admissible 7^ that 

satisfy (IV. 1.9). 
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FIG. 12: Variation of symbol SINRs and powers values of the proposed algorithm 
from random initialization. 
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FIG. 13: Variation of individual and global cost functions of the proposed algorithm 
from random initialization. 
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IV.4 JOINT TRANSMITTER ADAPTATION AND POWER CON­

TROL IN COGNITIVE RADIO NETWORKS 

An application of Algorithm 6 to the uplink of a Cognitive Radio (CR) Network 

with target values imposed on the signal-to-interference+noise-ratios (SINR) at the 

CR receiver is discussed in this section. 

CRs enable access to the licensed spectrum by secondary transmitters (SU) with 

specific restrictions on the interference that these can cause to the incumbent li­

censed users of the spectrum [47]. They are made possible through implementations 

in software defined radio platforms [48] which provide adaptable radios with versatile 

transmitters and receivers that can vary their transmitted waveforms and receiver 

filters for efficient use of the available radio spectrum. Unlike traditional communi­

cation systems which rely heavily on receiver signal processing, cognitive radios use 

receiver feedback [49] to optimize spectrum utilization through transmitter adapta­

tion. 

A common approach taken for transmitter adaptation in CRs is based on precoder 

optimization [50] where the problem of transmitter adaptation is cast in a general 

signal space framework that is applicable to a wide range of scenarios which include 

OFDM-based transmissions and MIMO systems as particular cases [51-53]. For 

multiuser systems that share the same bandwidth and signaling interval resources 

at the physical layer, precoder optimization has also been investigated using game-

theoretic approaches in [5,6], where the problem of maximizing mutual information 

on each link is solved for specific operating constraints such as transmit power and 

spectral mask design, while accommodating practical implementation aspects like 
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maximization of transmission rate on each link with an average error probability 

constraint. 

When the SUs are expected to meet specified operating constraints such as target 

SINR or interference constraints, transmitter adaptation is augmented with a power 

control mechanism. In this direction, we note the recent work for downlink CR 

systems in [54] which discusses the design of block diagonalizing precoders based on 

a minimum mean-squared error (MMSE) criterion with power constraints. A resource 

allocation problem for spectrum underlay in cognitive wireless networks is discussed 

in [55] where a joint rate and power allocation scheme with Quality of Service (QoS) 

and interference constraints is proposed. A similar scheme for spectrum overlay is 

presented in [56] where the secondary user's effective throughput is maximized while 

exploiting the sensing result and accuracy for efficient resource allocation. 

We consider the uplink of a CR network as illustrated in Figure 14 where multiple 

secondary users are transmitting to a secondary base station receiver in the presence 

of a licensed primary user system. We note that the transmission between the primary 

(licensed) user has highest priority and that the secondary CR network is expected 

to limit the interference caused to the primary network while attempting to provide 

service to the secondary users with a specified quality of service determined by specific 

target SINR values at the secondary CR receiver. This can be accomplished through 

joint adaptation of the precoder and transmit power. 

In order to evaluate the convergence speed of the proposed algorithm for joint 

transmitter adaptation and power control, we performed simulations over various 

scenarios, noting that, as it is the case in general with incremental algorithms, the 

convergence speed depends on the values of the increment steps specified by the 
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FIG. 14: Cognitive Radio Network Model. 

FIG. 15: Dependence of convergence speed on the increment constants fj, and /? in 
100 trials. 
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FIG. 17: Dependence of convergence speed on the tolerance e in 100 trials 
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algorithm constants /3 and /z, as well as by the value of the tolerance e. 

In the following simulation experiments we considered a CE system with K == 2 

active transmitters and selected specific values for the number of signal dimensions 

n, the precoder sizes and M2, for the algorithm constants /? and fi, and for the 

tolerance e, and we ran 100 trials of the algorithm recording the number of iterations 

n needed for convergence. We note that, the actual number of iterations depends 

on the number of active users and their corresponding precoder sizes: one update 

for precoder k consists of M* updates of all of its columns, and one update of the 

ensemble of precoders consists of iterations corresponding to the FOR 

loop: 8 in Algorithm 6. Thus, for better visualization of the convergence speed 

results we will look at the average number of ensemble updates until convergence 

rather than the average number of actual iterations n in our plots. This is obtained 

by dividing the total number of iterations recorded, n, to Mk which represents 

the number of iterations/ensemble. 

In the third experiment we studied convergence of the proposed algorithm for 

different values of the algorithm constants n and /?, precoder sizes Mi = M2 = 6 and 

target SINEs yf = 0.8 and 7* = 0.5. The results of this experiment are plotted in 

Fig. 15 from where we note that convergence speed is affected mostly by changes in 

the value of and that it does not depend significantly on the value of / i .  

In the fourth experiment we studied the convergence speed of the algorithm for 

fixed algorithm constants /3 = 0.2 and /i = 0.1 and tolerance e = 0.001 for varying 

precoder sizes and signal dimensions available such that the ratio of the total number 

of precoder columns to the number of signal dimensions Yhk=i Mk/N is constant. The 

results of this experiment are shown in Fig. 16 from which we note that the average 
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number of ensemble updates needed for convergence within tolerance e = 0.001 does 

not vary significantly for increasing N and M\ + Af2. 

In the final experiment performed we studied the dependence of convergence 

speed on the algorithm tolerance e for a different number of signal dimensions N and 

fixed algorithm constants /3 = 0.2 and = 0.1. The results of this experiment are 

shown in Fig. 17 which confirms our expectations that the lower the value of e, the 

slower the convergence of the proposed algorithm to the optimal fixed point. This 

result was expected considering the fact that a smaller e implies a higher precision for 

the fixed-point, which, with fixed increments will be reached through an increased 

number of updates. 

IV.5 CHAPTER SUMMARY 

In this chapter we study joint transmitter adaptation and power control in mul­

tiuser uplink wireless systems with target SINR values as a distributed constrained 

optimization problem, and we discuss necessary conditions that must be satisfied by 

the optimal solution. We also present an incremental algorithm that adapts user 

transmitters and power values in a distributed fashion until a fixed point is reached 

where the specified target SINRs are achieved with minimum transmitted power. 

Numerical results obtained from simulations that illustrate the convergence of the 

proposed algorithm are also presented along with an extension of the algorithm to 

Cognitive radio networks. 
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IV.6 APPENDIX 

Necessary conditions for optimality have been discussed in Section III.5 for down­

link wireless systems and Section IV.2 for uplink wireless systems . Turning to the 

sufficient conditions, we use the Bordered Hessian Matrix approach [41, Ch. 5] to 

determine second order optimality conditions, and a detailed analysis of the above 

in the uplink scenario is presented in the appendix. We consider the Lagrangian ex­

pression (III.2.2) for a given user k and note that there are three sets of constraints 

- 7£, m = 1,..., Mfc 

9 m = s L f e ) Ts« - 1, m = 1,..., mk (IV.6.1) 

gm=p r l-yzl1p£\ 

along with five sets of variables: p ,  sm \ p m \  ( £ m \  m  =  1,..., Mk- The Bordered 

Hessian Matrix for the Lagrangian expression (III.2.2) can be written in a compact 

block matrix form as [41, Ch. 5] 

B (k) _ 0(2M*x2M f c )  A(fc) 1 
2 M k + l ) x ( N M k + M k )  

A(fc)T 
_A (JVM f c+M f c )x(2M f c+l)  

j-i(fc) 
^ ( N M k + M k ) x ( N M k + M k )  

of the block matrix A& is 

a'i, ,0  
// 

« i ,  •  ,0  

0,  • • •  > a M k  0,  ••  ' 'aMk 

A<*> = /// 
ai 1 B ' ' ,o 0,  • •  •  ,0  

0,  • • •  
m  

a M k  
0,  ••  •  ,0  

0,  • • •  ,0 -1 ,  ••  •  , -1  

(IV.6.2) 

(IV.6.3) 
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where 

JC = 2pm^Sm)THj [R^)]~1HfcSm) = 27fc* 

£ = SSS)THJ [R£I)]-1HFC8S!) = 

*£ = 2sm)T 

for m = 1,..., Mfc. 

The expression of the block matrix C* is 

q(k) _ 

c;, 

o, 

(c';)T, 

0, 

,0 Cl> ••• ,0 

> ^Mn 0) • • • > cMfc 

,0 c';, ••• ,0 

,(c'mJT 0, ... ,cZk 

where 

cm  = 8p-mw2^ ) 3(ht[r^ )]-1h f cs^ )s^ ) thj[r^ )]-1h f c) 

8V2.-(t)3 WJJ)T 
0 /fc 0,71 771 

(IV.6.4) 

(IV.6.5) 

(IV.6.6) 
cm = 47*^)3Hj[Rin

fc)]"1H^) = 47^Am)e^)3Sm) 

/" _ o^fc)3/'cWT|4'Tr'R(*:)l-lH. — o\(fc)2^*)3 
c m  —  4 t t n  v&m njc l*Vri J n.jtbm ) — cm 

TO = 

Note that the optimum values of Sm and p~m are considered in the bordered 

Hessian matrix, and the sufficient conditions for the Lagrangian (III.2.2) are given 

by 

(_ l ) (2M f c + i ) | B M | > 0 )  

for t  = (4m k  + 3), (4m k  + 4), • • • , m k(n + 3) + 1, 

(IV.6.7) 
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where |Bh^| is the £-th principal determinant of the bordered Hessian matrix B/,. 

Thus, provided that (IV.2.21) is verified, the matrices St and P*, satisfying (III.2.3)-

(III.2.4) are a solution of the constrained optimization problem (III.2.1). 

Second order optimality conditions for the downlink constrained optimization 

problem can also be verified as shown above. 
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JOINT TRANSMITTER ADAPTATION AND POWER 

CONTROL IN FADING CHANNELS 

In the previous chapters, transmitter adaptation and power control was achieved 

based on certain target SINR constraints under the assumption that the wireless 

channel parameters are known and do not change while an active transmission is 

ongoing. However, this assumption may not be satisfied in practical scenarios where 

multipath propagation and mobility result in time-varying fading wireless channels. 

We note that the effects of fading may be mitigated by using appropriately designed 

signal processing algorithms that adapt both transmitters and receivers based on the 

actual channel characteristics. 

However, in many instances, it may not be possible to estimate channel charac­

teristics due to its time varying nature. In other words, by the time the channel 

parameters are estimated and its performance analyzed, the channel under consid­

eration may change to new values. A realistic approach in this case would be to use 

the average characteristics of the channel in the transmitter adaptation and power 

control algorithm. In this chapter, performance of the incremental algorithm for 

joint transmitter adaptation and power control in both downlink and uplink scenar­

ios are studied in the context of fading channels. Specifically, average characteristics 

of the multipath fading channels axe used to compute precoder and power matrices 

for which target SINR values are satisfied; then, Monte Carlo simulations are per­

formed to study the performance for actual channel realizations. The performance 
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measure used to evaluate performance of the algorithm in this work is the probability 

of outage. 

V.l SYSTEM MODEL 

For the downlink and uplink scenarios considered in Chapters III and IV, prop­

agation between a given transmitter and receiver is modeled by a vector channel 

described by matrix H* of dimension N x N which is assumed to be a circulant 

matr ix  corresponding to  the  mul t ipath  channel  response  hfc  =  [hki ,  •  •  • ,  We 

note that a stable and known multipath channel is assumed in Chapters III and IV 

which implies a deterministic and known Hfc matrix. 

However, this assumption is usually not satisfied in practice, where fading makes 

the parameters of channel matrices random variables rather than deterministic. In 

this chapter we assume that the multipath channel response corresponds to a fading 

channel with known statistics (mean and variance) and that only the average channel 

matrix Hfc, corresponding to the average channel parameters hfc = [hki, • • •, /~tfcw]T, 

is known. 

For the downlink scenario in Chapter III, the JV-dimensional received signal by a 

given user k is given by the expression 

and in order to distinguish between the desired signal and the corresponding inter-

ference+noise, it can be rewritten as 

rfc = HfcXfc + nfc = HfcSP1/2b -I- nfc, (V.1.1) 

K 

rfc = HfcbfcV/pfcSfcbty/pfie + nfc 

J „:™ll desired signal 

(V.1.2) 

interference + noise (z*) 



83 

where the interference+noise z* experienced by user k  has correlation matrix 

Zfc = E[zkzJ] = Hfc | sepesAlil+Wk. (V.1.3) 
V=M#fc ) 

Following the sequence of steps as shown in Section III.l to perform parallel 

decomposition of user k downlink channel matrix H* by applying the whitening 

transformation followed by an SVD of the transformed channel matrix, partitioning 

the singular value matrix and the transformed codeword vector, we obtain the total 

interference power affecting all the user's symbols as 

(V. 1.4) 
k=1 Jt=l 

where Dfc is the partitioned singular value matrix corresponding to the SVD of H^. 

For the uplink scenario in Chapter IV, the iV-dimensional received signal vector at 

the common receiver corresponding to one signaling interval is given by the expression 

K 
r = 5^HfcSfcP£/2b* + n, (V.1.5) 

k=1 

and it can also be expressed from the perspective of the m-th symbol of user k  as 

r = b™h k&yf& )+ 

Affc k 
+ ^ H,S,P]% + n. (V.1.6) 
n=l ,n/m t=l , t^ tk  
v  

interference + noise = i (*) m 

The first term is the desired signal corresponding to symbol m  of user k ,  and 

the remaining terms represent the interference and noise corrupting it at the receiver 

with correlation matrix 

Rg> = E[i£'&,T] = R - (V.1.7) 
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where 
K 

R = £[rrT] = ^HfcSfcPfcSjHl + W (V.1.8) 
k= 1 

is the correlation matrix of the received signal in (V.1.6). 

Following the sequence of steps as shown in section IV. 1, the SINR for symbol m 

of user k is given by 

(fc) = 

7m 1 - pM)THfc 
(V.1.9) 

= p«sLfc)THl[R^>]-Hfcs«, 

and the corresponding MMSE expression is 

= H*) = 
1 + 7m (V.1.10) 

1 + [Ri^)]_1HfcSm) ' 

Our goal in this setup is to study the joint transmitter adaptation and power 

control algorithms in Sections III.3 and IV.3 in the context of multipath fading 

channels where average characteristics of the channel are used to compute optimal 

precoding and power matrices with specified target SINR values 7^, for all k = 

1 

V.2 THE JOINT TRANSMITTER ADAPTATION AND POWER 

CONTROL ALGORITHM IN FADING CHANNELS 

The proposed algorithms for joint transmitter adaptation and power control in 

the downlink and uplink scenarios are derived as shown in Sections III.3 and IV.3 

c o n s i d e r i n g  o n l y  t h e  a v e r a g e  c h a n n e l  m a t r i x  H *  f o r  a l l  k  =  1 , . . . ,  K .  
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Performance of Algorithm 4 and Algorithm 6 for joint transmitter adaptation 

and power control in the context of fading channels is studied using the probability 

of outage which is defined as the probability that the output SINR for a given user 

k, 7fc, falls below the specified target SINR 7^. When the statistics of the fading 

channel parameters is known, the probability of outage can be evaluated analytically 

and is implied by the cumulative distribution function (CDF) evaluated at 7^, that 

is 

where Py^jk) denotes the probability density function (PDF) of the SINR 7* which 

is implied by the statistics of the fading channel parameters. 

Numerically, the probability of outage is evaluated through Monte Carlo sim­

ulations, and we study the performance of Algorithm 4 and Algorithm 6 by 

evaluating the probability of outage in the case of a specific fading channel model. 

We note that a wireless communication channel can experience fading due to several 

factors among which the most common are short term fading (also referred to as fast 

fading) and long term fading (also referred to as slow fading). The former is due to 

multipath propagation and user mobility while the latter is due to shadowing and 

exponential path-loss. 

V.3 PERFORMANCE ANALYSIS 

Monte Carlo simulations are performed to evaluate the probability of outage for 

Algorithm 4 and Algorithm 6. In our simulations we consider a fast fading sce­

nario where the channel between a given user k and the base station is dynamic with 

pi 
/ Pjk(yk)d-yk 

Jo 
(V.2.1) 
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FIG. 18: Outage probability for average and actual downlink channel realizations. 

a small coherence time such that it is not practical to estimate channel characteristics 

for use in conjunction with joint transmitter adaptation and power control, so the 

average channel parameters are used as discussed in the previous section. Specifi­

cally, we consider multipath Rayleigh fading channels where the amplitude scaling 

hik for path i of user k channel is a Rayleigh random variable with PDF [59] 

f(hik)  = —ye 2°l (V.3.1) 
°k 

where E[h2
i k]  =  2a\. 

We performed simulations to analyze the outage probability for a system wireless 

with K = 2 active users in a signal space of dimension N = 6 and with precoders of 

dimension M\ = Mi = 4. The precoder and power matrices are initialized randomly, 

and white noise is considered with covariance matrix W = 0.116- The algorithm 
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FIG. 19: Outage probability for average and actual uplink channel realizations. 

parameters for this experiment are set to n = 0.1, f3 = 0.2, e = 0.001, and the user 

target SINRs are initialized to 7^ = {0.8,0.5}. The channels matrices are circulant 

with elements having a Rayleigh distribution. 

We start by applying Algorithm 4 for downlink average channels and Algo­

rithm 6 for uplink average channels, computing the optimal precoder and power 

matrices that meet the target SINR requirements. Next, the optimal precoder and 

power matrices obtained for average channels are used to determine the SINR values 

for 1,000 independent realizations of the user channels. Results of this experiment 

are plotted in Figures 18 and 19 which show that the target SINR value directly influ­

ences the outage probability as the higher this is the higher the probability of outage 

will be. For the downlink system model illustrated by Figure 18, we observe that 
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the probability of outage for user 1 with target SINR equal to 0.8(or —0.9691 dB) 

is close to 15% while for user 2 with target SINR equal to 0.5 (or —3.01 dB) is only 

8%. Similarly, for the uplink system model, we observe from Figure 19 that the 

probability of outage for user 1 with target SINR equal to 0.8 is close to 19% while 

for user 2 with target SINR equal to 0.5 it is only 5.5%. 

V.4 CHAPTER SUMMARY 

In this chapter we investigated the performance of joint transmitter adaptation 

and power control algorithms for downlink and uplink wireless systems with target 

SINR requirements in the context of fading channels. The algorithms are imple­

mented using the average values of channel parameters for which optimal precoder 

and power matrices that meet the target SINR values are obtained. These matrices 

are then used to evaluate the probability of outage using Monte Carlo simulations. 
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CONCLUSIONS AND FUTURE RESEARCH 

In this dissertation we have provided a comprehensive theoretical analysis of per­

formance optimization over wireless links with operating constraints. The prominent 

goal achieved by the work presented in this dissertation is efficient utilization of 

radio resources by joint transmitter adaptation and power control. The proposed al­

gorithms result in wireless systems with highly adaptive capabilities while combating 

interference and satisfying target Quality of Service requirements. The algorithms 

are developed in a general signal space framework which makes them applicable 

to a wide variety of communication scenarios (such as OFDM, CDMA, or multiple 

antenna/MIMO systems [5,6]). 

Downlink transmitter adaptation based on greedy SINR maximization and inter­

ference avoidance is presented in Chapter II, and three algorithms are proposed based 

on a collaborative, "inverse channel" and a matched filter based approach. Fixed point 

properties of the proposed algorithms yield interesting results for various scenarios, 

like Welch Bound Equality (WBE) precoder ensembles for ideal channels with white 

noise at all receivers and point-to-point communication scenarios which yield the 

same correlations for the "inverse channel" algorithm precoder emsembles as those 

of the dual uplink scenario. 

This is followed by joint transmitter adaptation and power control in downlink 

wireless systems where a constrained optimization problem is formulated based on 
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codeword norm and target SINR constraints. The proposed Algorithm 4 mini­

mizes total interference based on the optimal codeword and power ensembles that 

satisfy necessary and sufficient conditions derived in Chapter III. Simulation results 

illustrate the tracking ability of Algorithm 4 for a varying number of active users 

and for variable SINRs. Convergence speed of Algorithm 4 is evaluated based on 

varying algorithmic constants, and all simulations consider the average number of 

updates of the codeword and power matrices. It is observed that the convergence 

speed is affected by changes in the increment constant n, the algorithm tolerance c 

and increasing number of antennas in the system. The joint precoder adaptation and 

power control algorithm is proposed for a general framework with linear precoders 

and block transmissions in downlink wireless systems using a constrained optimiza­

tion problem that minimizes total sum MMSEs based on target SINR requirements. 

Extensive simulations of the proposed Algorithm 5 have confirmed that the incre­

mental updates result in a monotonic decrease of the total sum of MMSEs to its 

lower bound as illustrated in the cost function convergence plot. 

Chapter IV presents a similar study on joint precoder adaptation and power 

control in uplink wireless systems where a constrained optimization problem is for­

mulated at each active transmitter and transmit precoder and power matrices are 

jointly optimized subject to specific mathematical constraints implied by constraints 

on the precoder matrices and by the desired target SIRs. The joint precoder adap­

tation and power control algorithm is implemented in a distributed fashion until a 

fixed point is reached where the specified target SINRs are achieved with minimum 

transmitted power. A detailed discussion of second order optimality conditions in the 

context of uplink wireless systems has been presented this chapter. The constrained 
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optimization problem is solved using the Lagrange multipliers method [41, Ch. 5], 

and the bordered Hessian matrix is evaluated at the critical point in order to deter­

mine if the precoder and power ensembles satisfying the necessary conditions are also 

optimal with respect to the constrained optimization problem. Extensive simulations 

of the proposed Algorithm 6 illustrate that it always converges to the optimal point 

where the global cost function is equal to the tight lower bound where the global cost 

function is defined as the sum of all individual user cost functions. Simulation results 

illustrate convergence of Algorithm 6 for SINRs, user powers and cost functions. 

This was followed by an application of Algorithm 6 to the uplink of a Cognitive 

Radio (CR) Network with target values imposed on the signal-to-interference+noise-

ratios (SINR) at the CR receiver. Convergence speed of the proposed algorithm for 

joint transmitter adaptation and power control was evaluated in the context of an 

uplink cognitive radio network based on the average number of ensemble updates 

until convergence. 

In the previous chapters, transmitter adaptation and power control was achieved 

based on certain target SINR constraints under the assumption that the wireless 

channel parameters are known and do not change while an active transmission is on­

going. However, in many instances, it may not be possible to estimate characteristics 

of the channel due to its time varying nature, and this challenge motivated the work 

in this chapter, where the average characteristics of the channel in the transmitter 

adaptation and power control algorithm axe used to compute optimal precoding and 

power matrices with specified target SINR values. Performance of the proposed algo­

rithms for both downlink and uplink scenarios are evaluated using the probability of 

outage measure which is defined as the probability that the output SINR for a given 
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user A, 7fc, falls below the specified target SINR 7^. Multipath Rayleigh fading chan­

nels are considered, and the probability of outage is evaluated through Monte Carlo 

simulations which show that the target SINR value directly influences the outage 

probability and the higher this is the higher the probability of outage. 

VI. 1 FUTURE WORK 

This dissertation presents lot of promising results which can be implemented 

successfully in the design of future wireless communication systems provided some 

additional theoretical issues are addressed. 

Analysis of feedback mechanisms for the wireless system models considered in 

this work is an interesting area of future work, and it provides scope for various 

quantization schemes. 

Future work on implementation of the proposed algorithms in Cognitive Radio 

Networks includes analysis of how potential interference between primary and sec­

ondary users operating in adjacent channels can be formally incorporated in the 

constrained optimization problem describing joint transmitter adaptation and power 

control and how fading channels affect the performance of the proposed algorithm. 

Performance of the proposed algorithms in the context of fading channels can be 

evaluated using additional performance measures such as target satisfaction proba­

bility. 
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