5,887 research outputs found

    Fully integrated CMOS power amplifier design using the distributed active-transformer architecture

    Get PDF
    A novel on-chip impedance matching and power-combining method, the distributed active transformer is presented. It combines several low-voltage push-pull amplifiers efficiently with their outputs in series to produce a larger output power while maintaining a 50-Ω match. It also uses virtual ac grounds and magnetic couplings extensively to eliminate the need for any off-chip component, such as tuned bonding wires or external inductors. Furthermore, it desensitizes the operation of the amplifier to the inductance of bonding wires making the design more reproducible. To demonstrate the feasibility of this concept, a 2.4-GHz 2-W 2-V truly fully integrated power amplifier with 50-Ω input and output matching has been fabricated using 0.35-μm CMOS transistors. It achieves a power added efficiency (PAE) of 41 % at this power level. It can also produce 450 mW using a 1-V supply. Harmonic suppression is 64 dBc or better. This new topology makes possible a truly fully integrated watt-level gigahertz range low-voltage CMOS power amplifier for the first time

    Concepts and methods in optimization of integrated LC VCOs

    Get PDF
    Underlying physical mechanisms controlling the noise properties of oscillators are studied. This treatment shows the importance of inductance selection for oscillator noise optimization. A design strategy centered around an inductance selection scheme is executed using a practical graphical optimization method to optimize phase noise subject to design constraints such as power dissipation, tank amplitude, tuning range, startup condition, and diameters of spiral inductors. The optimization technique is demonstrated through a design example, leading to a 2.4-GHz fully integrated, LC voltage-controlled oscillator (VCO) implemented using 0.35-μm MOS transistors. The measured phase-noise values are -121, -117, and -115 dBc/Hz at 600-kHz offset from 1.91, 2.03, and 2.60-GHz carriers, respectively. The VCO dissipates 4 mA from a 2.5-V supply voltage. The inversion mode MOSCAP tuning is used to achieve 26% of tuning range. Two figures of merit for performance comparison of various oscillators are introduced and used to compare this work to previously reported results

    Low-Power, High-Speed Transceivers for Network-on-Chip Communication

    Get PDF
    Networks on chips (NoCs) are becoming popular as they provide a solution for the interconnection problems on large integrated circuits (ICs). But even in a NoC, link-power can become unacceptably high and data rates are limited when conventional data transceivers are used. In this paper, we present a low-power, high-speed source-synchronous link transceiver which enables a factor 3.3 reduction in link power together with an 80% increase in data-rate. A low-swing capacitive pre-emphasis transmitter in combination with a double-tail sense-amplifier enable speeds in excess of 9 Gb/s over a 2 mm twisted differential interconnect, while consuming only 130 fJ/transition without the need for an additional supply. Multiple transceivers can be connected back-to-back to create a source-synchronous transceiver-chain with a wave-pipelined clock, operating with 6sigma offset reliability at 5 Gb/s

    A Noise-Shifting Differential Colpitts VCO

    Get PDF
    A novel noise-shifting differential Colpitts VCO is presented. It uses current switching to lower phase noise by cyclostationary noise alignment and improve the start-up condition. A design strategy is also devised to enhance the phase noise performance of quadrature coupled oscillators. Two integrated VCOs are presented as design examples
    corecore