3 research outputs found

    A Topology-Aware Collision Resolution Algorithm

    Get PDF
    A new collision resolution algorithm called the Space Division Multiple Access protocol (SDMA) is presented. SDMA gains a performance advantage over similar protocols by using information about the positions of stations on the network. The protocol can operate asynchrononsly on a broadcast bus, allowing variable sized packet traffic. Through simulation the protocol is demonstrated to have better performance than Ethernet and the Capetanakis Tree protocol, a similar collision resolution protocol, under some traffic conditions. In particular, under heavy loads, SDMA displays better average throughput and lower variance of delay than Ethernet. The protocol demonstrates a performance bias based on the location of stations, but in most cases this bias is less sei\u3eere than that experienced by Ethernet

    Controlling Window Protocols for Time-Constrained Communication in a Multiple Access Environment

    Get PDF
    For many time-constrained communication applications, such as packetized voice, a critical performance measure is the percentage of messages which are transmitted within a given amount of time after their arrival at a sending station. We examine the use of a group random access protocol based on time windows for achieving time-constrained communication in a multiple access environment. First, we formulate a policy for controlling protocol operation in order to minimize the percentage of messages with waiting times greater than some given bound. A semi-Markov decision model is then developed for protocol operation and three of the four optimal control elements of this policy are then determined. Although the semi-Markov decision model can also be used to obtain performance results, the procedure is too computationally expensive to be of practical use. Thus, an alternate performance model based on a centralized queueing system with impatient customers is developed. Protocol performance under the optimal elements of the control policy shows significant improvements over cases in which the protocol is not controlled in this manner. Simulation results are also presented to corroborate the analytic results
    corecore