17,878 research outputs found

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Get PDF
    Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure, temperature, roughness, and obstacles. As an effective method of high-dimensional feature extraction, deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design, such as adding noise to outputs, evolutionary learning used to optimize hidden layer weights, optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting. The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness, instantaneity and seasonal characteristics

    Enhanced Estimation of Autoregressive Wind Power Prediction Model Using Constriction Factor Particle Swarm Optimization

    Full text link
    Accurate forecasting is important for cost-effective and efficient monitoring and control of the renewable energy based power generation. Wind based power is one of the most difficult energy to predict accurately, due to the widely varying and unpredictable nature of wind energy. Although Autoregressive (AR) techniques have been widely used to create wind power models, they have shown limited accuracy in forecasting, as well as difficulty in determining the correct parameters for an optimized AR model. In this paper, Constriction Factor Particle Swarm Optimization (CF-PSO) is employed to optimally determine the parameters of an Autoregressive (AR) model for accurate prediction of the wind power output behaviour. Appropriate lag order of the proposed model is selected based on Akaike information criterion. The performance of the proposed PSO based AR model is compared with four well-established approaches; Forward-backward approach, Geometric lattice approach, Least-squares approach and Yule-Walker approach, that are widely used for error minimization of the AR model. To validate the proposed approach, real-life wind power data of \textit{Capital Wind Farm} was obtained from Australian Energy Market Operator. Experimental evaluation based on a number of different datasets demonstrate that the performance of the AR model is significantly improved compared with benchmark methods.Comment: The 9th IEEE Conference on Industrial Electronics and Applications (ICIEA) 201

    Exploring Interpretable LSTM Neural Networks over Multi-Variable Data

    Full text link
    For recurrent neural networks trained on time series with target and exogenous variables, in addition to accurate prediction, it is also desired to provide interpretable insights into the data. In this paper, we explore the structure of LSTM recurrent neural networks to learn variable-wise hidden states, with the aim to capture different dynamics in multi-variable time series and distinguish the contribution of variables to the prediction. With these variable-wise hidden states, a mixture attention mechanism is proposed to model the generative process of the target. Then we develop associated training methods to jointly learn network parameters, variable and temporal importance w.r.t the prediction of the target variable. Extensive experiments on real datasets demonstrate enhanced prediction performance by capturing the dynamics of different variables. Meanwhile, we evaluate the interpretation results both qualitatively and quantitatively. It exhibits the prospect as an end-to-end framework for both forecasting and knowledge extraction over multi-variable data.Comment: Accepted to International Conference on Machine Learning (ICML), 201
    • …
    corecore