4 research outputs found

    Ultra-Wideband CMOS Transceiver Front-End for Bio-Medical Radar Sensing

    Get PDF
    Since the Federal Communication Commission released the unlicensed 3.1-10.6 GHz frequency band for commercial use in early 2002, the ultra wideband (UWB) has developed from an emerging technology into a mainstream research area. The UWB technology, which utilizes wide spectrum, opens a new era of possibility for practical applications in radar sensing, one of which is the human vital sign monitoring. The aim of this thesis is to study and research the possibility of a new generation humanrespiration monitoring sensor using UWB radar technology and to develop a new prototype of UWB radar sensor for system-on-chip solutions in CMOS technology. In this thesis, a lowpower Gaussian impulse UWB mono-static radar transceiver architecture is presented. The UWB Gaussian pulse transmitter and receiver are implemented and fabricated using 90nm CMOS technology. Since the energy of low order Gaussian pulse is mostly condensed at lower frequency, in order to transmit the pulse in a very efficient way, higher order Gaussian derivative pulses are desired as the baseband signal. This motivates the advancement of the design into UWB high-order pulse transmitter. Both the Gaussian impulse UWB transmitter and Gaussian higher-order impulse UWB transmitter take the low-power and high-speed advantage of digital circuit to generate different waveforms. The measurement results are analyzed and discussed. This thesis also presents a low-power UWB mono-static radar transceiver architecture exploiting the full benefit of UWB bandwidth in radar sensing applications. The transceiver includes a full UWB band transmitter, an UWB receiver front-end, and an on-chip diplexer. The non-coherent UWB transmitter generates pulse modulated baseband signals at different carrier frequencies within the designated 3-10 GHz band using a digitally controlled pulse generator. The test shows the proposed radar transceiver can detect the human respiration pattern within 50 cm distance. The applications of this UWB radar sensing solution in commercialized standard CMOS technology include constant breathing pattern monitoring for gated radiation therapy, realtime monitoring of patients, and any other breathing monitoring. The research paves the way to wireless technology integration with health care and bio-sensor network

    A 0.1–5.0 GHz flexible SDR receiver with digitally assisted calibration in 65 nm CMOS

    Get PDF
    © 2017 Elsevier Ltd. All rights reserved.A 0.1–5.0 GHz flexible software-defined radio (SDR) receiver with digitally assisted calibration is presented, employing a zero-IF/low-IF reconfigurable architecture for both wideband and narrowband applications. The receiver composes of a main-path based on a current-mode mixer for low noise, a high linearity sub-path based on a voltage-mode passive mixer for out-of-band rejection, and a harmonic rejection (HR) path with vector gain calibration. A dual feedback LNA with “8” shape nested inductor structure, a cascode inverter-based TCA with miller feedback compensation, and a class-AB full differential Op-Amp with Miller feed-forward compensation and QFG technique are proposed. Digitally assisted calibration methods for HR, IIP2 and image rejection (IR) are presented to maintain high performance over PVT variations. The presented receiver is implemented in 65 nm CMOS with 5.4 mm2 core area, consuming 9.6–47.4 mA current under 1.2 V supply. The receiver main path is measured with +5 dB m/+5dBm IB-IIP3/OB-IIP3 and +61dBm IIP2. The sub-path achieves +10 dB m/+18dBm IB-IIP3/OB-IIP3 and +62dBm IIP2, as well as 10 dB RF filtering rejection at 10 MHz offset. The HR-path reaches +13 dB m/+14dBm IB-IIP3/OB-IIP3 and 62/66 dB 3rd/5th-order harmonic rejection with 30–40 dB improvement by the calibration. The measured sensitivity satisfies the requirements of DVB-H, LTE, 802.11 g, and ZigBee.Peer reviewedFinal Accepted Versio

    RĂ©cepteur Sans-Fil Ă  Basse Consommation et Ă  Modulation Mixte FSK-ASK pour les Dispositifs MĂ©dicaux

    Get PDF
    RÉSUMÉ Les émetteurs-récepteurs radiofréquences (RF) offrent le lien de communications le plus commun afin de mettre au point des dispositifs médicaux implantables dédiés aux interfaces homme-machines. La surveillance en continu des paramètres biologiques des patients nécessite un module de communication sans-fil capable de garantir un échange de données rapide, en temps réel, à faible puissance tout en étant implémenté dans un espace physique réduit. La consommation de puissance des dispositifs implantables joue un rôle important dans les durées de vie des batteries qui nécessitent une chirurgie pour leur remplacement, à moins qu’une technique de transfert de puissance sans-fil soit utilisée pour recharger la batterie ou alimenter l’implant a travers les tissus humains. Dans ce projet, nous avons conçu, implémenté et testé un récepteur RF à faible puissance et haut-débit de données opérant entre 902 et 928 MHz qui est la bande industrielle-scientifiquemédicale (Industrial, Scientific and Medical) d’Amérique du Nord. Ce récepteur fait partie d’un système de communication bidirectionnel dédié à l’interface sans-fil des dispositifs électroniques implantables et bénéficie d’une nouvelle technique de conversion de modulation par déplacement de fréquence (FSK) en Modulation par déplacement d’amplitude (ASK). Toutes les phases de conception et d’implémentation de la topologie adoptée pour les récepteurs RF sont survolées et discutées dans cette thèse. Les différents étages de circuits sont conçus selon une étude analytique fondée de la modulation FSK et ASK utilisées, ce qui permettra une amélioration des performances notamment le débit de transmission des données et la consommation de puissance. Tous les circuits sont réalisés de façon à ce que la consommation totale et la surface de silicium à réserver soient le minimum possible. Un oscillateur avec verrouillage par injection (Injection-Looked Oscillator - ILO) de faible puissance est réalisé pour assurer la conversion des signaux ASK en FSK. Une combinaison des avantages des deux architectures de modulation d’amplitude et de fréquence, pour les circuits d’émetteurrécepteur sans fil, a été réalisé avec le système proposé. Un module incluant un récepteur de réveil (Wake up) est ajouté afin d’optimiser la consommation totale du circuit en mettant tous les blocs à l’arrêt. Nous avons réalisé un récepteur de réveil RF compact et à faible coût, permettant de très faible niveaux de consommation d’énergie, une bonne sensibilité et une meilleure tolérance aux interférences. Le design est basé sur une topologie homodyne à détection d’enveloppe permettant une transposition directe du signal RF modulé en amplitude en un signal en bande de base. Cette architecture nécessite une architecture peu encombrante à intégrer qui élimine le problème des fréquences image pour la même topologie avec une modulation de fréquence.---------- ABSTRACT ISM band transceiver using a wake-up bloc for wireless body area networks (WBANs) wearable and implantable medical devices is proposed. The system achieves exceptionally low-power consumption and allows a high-data rate by combining the advantages of Frequency-Shift-Keying (FSK) and Amplitude-Shift- Keying (ASK) modulation techniques. The transceiver employs FSK modulation at a data rate of 8 Mbit/s to establish RF link among the medical device and a control unit. Transmitter (Tx) includes a new efficient FSK modulation scheme which offer up to 20 Mb/s of data-rate and dissipates around 0.084 nJ/b. The design of the proposed oscillator achieves variable frequency from 300 kHz to 8 MHz by adjusting the transistors geometry, the on-chip control signal and the tuning capacitors. In the transmitter path, the high-quality LOs Inand Quadrature-phase (I and Q) outputs are produced using a very low-power fully integrated integer-N frequency synthesizer. The architecture of the receiver is inspired from the super-regenerative receiver (SRR) topology which can be used to design a transceiver that is suitable for ASK modulation. In fact, this architecture is based mainly on envelope detection scheme which remove the need to process the carrier phase to reduce the complexity of integrated design. It has been shown too, that the envelope detection scheme is more robust to phase noise than the coherent scheme. The integrated receiver uses on a new FSK-to-ASK conversion technique. The conversion feature that we adopt in the main receiver design is based on the fact that the incident frequency of converter could be differentiated by the amplitude of output signal, which conducts to the frequency-to-amplitude conversion. Thanks to the injection locking oscillator (ILO). the new design of converter is located between the LNA as first part and the envelope detector as second part to benefit from the injection-locking isolation. On-Off-keying (OOK) fully passive wake-up circuit (WuRx) with energy harvesting from Radio Frequency (RF) link is used to optimize the power issipation of the RF transceiver in order to meet the low power requirement. The WuRx operates at the ISM 902–928 MHz. A high efficiency differential rectifier behaves as voltage multiplier. It generates the envelope of the input signal and provides the supply voltage for the rest of blocks including a low-power comparator and reference generators

    Synthèse de fréquence multi-bandes couvrant les ondes millimétriques pour les applications WiFi-WiGig

    Get PDF
    The works presented in this manuscript focus on the realization of a millimeter frequency synthesizer meeting the needs of the WiGig-Fi convergence. A first study was conducted to define a suitable low-power frequency synthesizer archi-tecture for WiFi and WiGig standards. All of the PLL components are subsequently detailed, highlighting the 28nm CMOS FDSOI technology benefits. Then, a study of low power millimeter broadband VCO is presented, highlighting a design methodology related to the 28nm CMOS FDSOI technology. Finally, various solutions are proposed in order to improve the PLL performances, with the incorporation of slow wave VCO, or injection locked ring oscillators.L’ensemble des travaux présentés au sein de manuscrit porte sur la réalisation d’un synthétiseur de fréquences millimétriques capable de répondre aux besoins de la convergence WiFi-WiGig. Une première étude est réalisée dans le but de définir une architecture de synthétiseur de fréquence faible consommation adaptée aux standards du WiFi et du WiGig. L’ensemble des éléments composants la PLL sont par la suite détaillés, mettant en avant les avantages offerts par la technologie 28 nm FDSOI CMOS. Une étude plus approfondie des VCO millimétriques large bande et faible consommation est ensuite présentée, permettant de mettre en avant une réelle méthodologie de conception en lien avec la technologie 28 nm FDSOI CMOS. Finale-ment, diverses solutions sont proposées dans le but d’améliorer les performances de la PLL, avec l’incorporation de VCO millimétriques à ondes lentes, ou d’oscillateurs à anneaux synchronisés
    corecore