4 research outputs found

    Doing Things with Words: The New Consequences of Writing in the Age of AI

    Get PDF
    Exploring the entanglement between artificial intelligence (AI) and writing, this thesis asks, what does writing with AI do? And, how can this doing be made visible, since the consequences of information and communication technologies (ICTs) are so often opaque? To propose one set of answers to the questions above, I begin by working with Google Smart Compose, the word-prediction AI Google launched to more than a billion global users in 2018, by way of a novel method I call AI interaction experiments. In these experiments, I transcribe texts into Gmail and Google Docs, carefully documenting Smart Composeā€™s interventions and output. Wedding these experiments to existing scholarship, I argue that writing with AI does three things: it engages writers in asymmetrical economic relations with Big Tech; it entangles unwitting writers in climate crisis by virtue of the vast resources, as Bender et al. (2021), Crawford (2021), and Strubell et al. (2019) have pointed out, required to train and sustain AI models; and it perpetuates linguistic racism, further embedding harmful politics of race and representation in everyday life. In making these arguments, my purpose is to intervene in normative discourses surrounding technology, exposing hard-to-see consequences so that weā€”people in the academy, critical media scholars, educators, and especially those of us in dominant groupsā€” may envision better futures. Toward both exposure and reimagining, my dissertationā€™s primary contributions are research-creational work. Research-creational interventions accompany each of the three major chapters of this work, drawing attention to the economic, climate, and race relations that word-prediction AI conceals and to the otherwise opaque premises on which it rests. The broader wager of my dissertation is that what technologies do and what they are is inseparable: the relations a technology enacts must be exposed, and they must necessarily figure into how we understand the technology itself. Because writing with AI enacts particular economic, climate, and race relations, these relations must figure into our understanding of what it means to write with AI and, because of AIā€™s increasing entanglement with acts of writing, into our very understanding of what it means to write

    Exploring Written Artefacts

    Get PDF
    This collection, presented to Michael Friedrich in honour of his academic career at of the Centre for the Study of Manuscript Cultures, traces key concepts that scholars associated with the Centre have developed and refined for the systematic study of manuscript cultures. At the same time, the contributions showcase the possibilities of expanding the traditional subject of ā€˜manuscriptsā€™ to the larger perspective of ā€˜written artefactsā€™

    Exploring Written Artefacts

    Get PDF
    This collection, presented to Michael Friedrich in honour of his academic career at of the Centre for the Study of Manuscript Cultures, traces key concepts that scholars associated with the Centre have developed and refined for the systematic study of manuscript cultures. At the same time, the contributions showcase the possibilities of expanding the traditional subject of ā€˜manuscriptsā€™ to the larger perspective of ā€˜written artefactsā€™

    SuperCDMS HVeV Run 2 Low-Mass Dark Matter Search, Highly Multiplexed Phonon-Mediated Particle Detector with Kinetic Inductance Detector, and the Blackbody Radiation in Cryogenic Experiments

    Get PDF
    There is ample evidence of dark matter (DM), a phenomenon responsible for ā‰ˆ 85% of the matter content of the Universe that cannot be explained by the Standard Model (SM). One of the most compelling hypotheses is that DM consists of beyond-SM particle(s) that are nonluminous and nonbaryonic. So far, numerous efforts have been made to search for particle DM, and yet none has yielded an unambiguous observation of DM particles. We present in Chapter 2 the SuperCDMS HVeV Run 2 experiment, where we search for DM in the mass ranges of 0.5--10ā“ MeV/cĀ² for the electron-recoil DM and 1.2--50 eV/cĀ² for the dark photon and the Axion-like particle (ALP). SuperCDMS utilizes cryogenic crystals as detectors to search for DM interaction with the crystal atoms. The interaction is detected in the form of recoil energy mediated by phonons. In the HVeV project, we look for electron recoil, where we enhance the signal by the Neganov-Trofimov-Luke effect under high-voltage biases. The technique enabled us to detect quantized eā»hāŗ creation at a 3% ionization energy resolution. Our work is the first DM search analysis considering charge trapping and impact ionization effects for solid-state detectors. We report our results as upper limits for the assumed particle models as functions of DM mass. Our results exclude the DM-electron scattering cross section, the dark photon kinetic mixing parameter, and the ALP axioelectric coupling above 8.4 x 10ā»Ā³ā“ cmĀ², 3.3 x 10ā»Ā¹ā“, and 1.0 x 10ā»ā¹, respectively. Currently every SuperCDMS detector is equipped with a few phonon sensors based on the transition-edge sensor (TES) technology. In order to improve phonon-mediated particle detectors' background rejection performance, we are developing highly multiplexed detectors utilizing kinetic inductance detectors (KIDs) as phonon sensors. This work is detailed in chapter 3 and chapter 4. We have improved our previous KID and readout line designs, which enabled us to produce our first Ćø3" detector with 80 phonon sensors. The detector yielded a frequency placement accuracy of 0.07%, indicating our capability of implementing hundreds of phonon sensors in a typical SuperCDMS-style detector. We detail our fabrication technique for simultaneously employing Al and Nb for the KID circuit. We explain our signal model that includes extracting the RF signal, calibrating the RF signal into pair-breaking energy, and then the pulse detection. We summarize our noise condition and develop models for different noise sources. We combine the signal and the noise models to be an energy resolution model for KID-based phonon-mediated detectors. From this model, we propose strategies to further improve future detectors' energy resolution and introduce our ongoing implementations. Blackbody (BB) radiation is one of the plausible background sources responsible for the low-energy background currently preventing low-threshold DM experiments to search for lower DM mass ranges. In Chapter 5, we present our study for such background for cryogenic experiments. We have developed physical models and, based on the models, simulation tools for BB radiation propagation as photons or waves. We have also developed a theoretical model for BB photons' interaction with semiconductor impurities, which is one of the possible channels for generating the leakage current background in SuperCDMS-style detectors. We have planned for an experiment to calibrate our simulation and leakage current generation model. For the experiment, we have developed a specialized ``mesh TES'' photon detector inspired by cosmic microwave background experiments. We present its sensitivity model, the radiation source developed for the calibration, and the general plan of the experiment.</p
    corecore