4 research outputs found

    Whole-Body Motion Planning for Manipulation of Articulated Objects

    No full text
    Abstract β€” Humanoid service robots performing complex object manipulation tasks need to plan whole-body motions that satisfy a variety of constraints: The robot must keep its balance, self-collisions and collisions with obstacles in the environment must be avoided and, if applicable, the trajectory of the end-effector must follow the constrained motion of a manipulated object in Cartesian space. These constraints and the high number of degrees of freedom make wholebody motion planning for humanoids a challenging problem. In this paper, we present an approach to whole-body motion planning with a focus on the manipulation of articulated objects such as doors and drawers. Our approach is based on rapidly-exploring random trees in combination with inverse kinematics and considers all required constraints during the search. Models of articulated objects hereby generate hand poses for sampled configurations along the trajectory of the object handle. We thoroughly evaluated our planning system and present experiments with a Nao humanoid opening a drawer, a door, and picking up an object. The experiments demonstrate the ability of our framework to generate solutions to complex planning problems and furthermore show that these plans can be reliably executed even on a low-cost humanoid platform. I

    Robust Localization and Efficient Path Planning for Mobile Sensor Networks

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : 전기·컴퓨터곡학뢀, 2016. 2. μ˜€μ„±νšŒ.The area of wireless sensor networks has flourished over the past decade due to advances in micro-electro-mechanical sensors, low power communication and computing protocols, and embedded microprocessors. Recently, there has been a growing interest in mobile sensor networks, along with the development of robotics, and mobile sensor networks have enabled networked sensing system to solve the challenging issues of wireless sensor networks by adding mobility into many different applications of wireless sensor networks. Nonetheless, there are many challenges to be addressed in mobile sensor networks. Among these, the estimation for the exact location is perhaps the most important to obtain high fidelity of the sensory information. Moreover, planning should be required to send the mobile sensors to sensing location considering the region of interest, prior to sensor placements. These are the fundamental problems in realizing mobile sensor networks which is capable of performing monitoring mission in unstructured and dynamic environment. In this dissertation, we take an advantage of mobility which mobile sensor networks possess and develop localization and path planning algorithms suitable for mobile sensor networks. We also design coverage control strategy using resource-constrained mobile sensors by taking advantages of the proposed path planning method. The dissertation starts with the localization problem, one of the fundamental issue in mobile sensor networks. Although global positioning system (GPS) can perform relatively accurate localization, it is not feasible in many situations, especially indoor environment and costs a tremendous amount in deploying all robots equipped with GPS sensors. Thus we develop the indoor localization system suitable for mobile sensor networks using inexpensive robot platform. We focus on the technique that relies primarily on the camera sensor. Since it costs less than other sensors, all mobile robots can be easily equipped with cameras. In this dissertation, we demonstrate that the proposed method is suitable for mobile sensor networks requiring an inexpensive off-the-shelf robotic platform, by showing that it provides consistently robust location information for low-cost noisy sensors. We also focus on another fundamental issue of mobile sensor networks which is a path planning problem in order to deploy mobile sensors in specific locations. Unlike the traditional planning methods, we present an efficient cost-aware planning method suitable for mobile sensor networks by considering the given environment, where it has environmental parameters such as temperature, humidity, chemical concentration, stealthiness and elevation. A global stochastic optimization method is used to improve the efficiency of the sampling based planning algorithm. This dissertation presents the first approach of sampling based planning using global tree extension. Based on the proposed planning method, we also presents a general framework for modeling a coverage control system consisting of multiple robots with resource constraints suitable for mobile sensor networks. We describe the optimal informative planning methods which deal with maximization problem with constraints using global stochastic optimization method. In addition, we describe how to find trajectories for multiple robots efficiently to estimate the environmental field using information obtained from all robots.Chapter 1 Introduction 1 1.1 Mobile Sensor networks 1 1.1.1 Challenges 3 1.2 Overview of the Dissertation 4 Chapter 2 Background 7 2.1 Localization in MSNs 7 2.2 Path planning in MSNs 10 2.3 Informative path planning in MSNs 12 Chapter 3 Robust Indoor Localization 15 3.1 An Overview of Coordinated Multi-Robot Localization 16 3.2 Multi-Robot Localization using Multi-View Geometry 19 3.2.1 Planar Homography for Robot Localization 20 3.2.2 Image Based Robot Control 21 3.3 Multi-Robot Navigation System 25 3.3.1 Multi-Robot System 26 3.3.2 Multi-Robot Navigation 30 3.4 Experimental Results 32 3.4.1 Coordinated Multi-Robot Localization: Single-Step 32 3.4.2 Coordinated Multi-Robot Localization: Multi-Step 36 3.5 Discussions and Comparison to Leap-Frog 42 3.5.1 Discussions 42 3.5.2 Comparison to Leap-Frog 45 3.6 Summary 51 Chapter 4 Preliminaries to Cost-Aware Path Planning 53 4.1 Related works 54 4.2 Sampling based path planning 56 4.3 Cross entropy method 59 4.3.1 Cross entropy based path planning 63 Chapter 5 Fast Cost-Aware Path Planning using Stochastic Optimization 65 5.1 Problem formulation 66 5.2 Issues with sampling-based path planning for complex terrains or high dimensional spaces 68 5.3 Cost-Aware path planning (CAPP) 73 5.3.1 CE Extend 75 5.4 Analysis of CAPP 81 5.4.1 Probabilistic Completeness 81 5.4.2 Asymptotic optimality 83 5.5 Simulation and experimental results 84 5.5.1 (P1) Cost-Aware Navigation in 2D 85 5.5.2 (P2) Complex Terrain Navigation 88 5.5.3 (P3) Humanoid Motion Planning 96 5.6 Summary 103 Chapter 6 Effcient Informative Path Planning 105 6.1 Problem formulation 106 6.2 Cost-Aware informative path planning (CAIPP) 109 6.2.1 Overall procedure 110 6.2.2 Update Bound 112 6.2.3 CE Estimate 115 6.3 Analysis of CAIPP 118 6.4 Simulation and experimental results 120 6.4.1 Single robot informative path planning 120 6.4.2 Multi robot informative path planning 122 6.5 Summary 125 Chapter 7 Conclusion and Future Work 129 Appendices 131 Appendix A Proof of Theorem 1 133 Appendix B Proof of Theorem 2 135 Appendix C Proof of Theorem 3 137 Appendix D Proof of Theorem 4 139 Appendix E Dubins' curve 141 Bibliography 147 초 둝 163Docto
    corecore