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Abstract

The area of wireless sensor networks has flourished over the past decade due
to advances in micro-electro-mechanical sensors, low power communication and
computing protocols, and embedded microprocessors. Recently, there has been
a growing interest in mobile sensor networks, along with the development of
robotics, and mobile sensor networks have enabled networked sensing system to
solve the challenging issues of wireless sensor networks by adding mobility into
many different applications of wireless sensor networks. Nonetheless, there are
many challenges to be addressed in mobile sensor networks. Among these, the
estimation for the exact location is perhaps the most important to obtain high
fidelity of the sensory information. Moreover, planning should be required to send
the mobile sensors to sensing location considering the region of interest, prior to
sensor placements. These are the fundamental problems in realizing mobile sensor
networks which is capable of performing monitoring mission in unstructured and
dynamic environment.

In this dissertation, we take an advantage of mobility which mobile sensor net-
works possess and develop localization and path planning algorithms suitable for
mobile sensor networks. We also design coverage control strategy using resource-
constrained mobile sensors by taking advantages of the proposed path planning
method.

The dissertation starts with the localization problem, one of the fundamen-
tal issue in mobile sensor networks. Although global positioning system (GPS)
can perform relatively accurate localization, it is not feasible in many situations,
especially indoor environment and costs a tremendous amount in deploying all
robots equipped with GPS sensors. Thus we develop the indoor localization sys-

tem suitable for mobile sensor networks using inexpensive robot platform. We



focus on the technique that relies primarily on the camera sensor. Since it costs
less than other sensors, all mobile robots can be easily equipped with cameras.
In this dissertation, we demonstrate that the proposed method is suitable for
mobile sensor networks requiring an inexpensive off-the-shelf robotic platform,
by showing that it provides consistently robust location information for low-cost
noisy sensors.

We also focus on another fundamental issue of mobile sensor networks which
is a path planning problem in order to deploy mobile sensors in specific loca-
tions. Unlike the traditional planning methods, we present an efficient cost-aware
planning method suitable for mobile sensor networks by considering the given
environment, where it has environmental parameters such as temperature, hu-
midity, chemical concentration, stealthiness and elevation. A global stochastic
optimization method is used to improve the efficiency of the sampling based plan-
ning algorithm. This dissertation presents the first approach of sampling based
planning using global tree extension.

Based on the proposed planning method, we also presents a general framework
for modeling a coverage control system consisting of multiple robots with resource
constraints suitable for mobile sensor networks. We describe the optimal informa-
tive planning methods which deal with maximization problem with constraints
using global stochastic optimization method. In addition, we describe how to
find trajectories for multiple robots efficiently to estimate the environmental field
using information obtained from all robots.

Keywords: Indoor localization system, Cost-aware path planning, coverage con-

trol for multi-robot
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Abstract

The area of wireless sensor networks has flourished over the past decade due
to advances in micro-electro-mechanical sensors, low power communication and
computing protocols, and embedded microprocessors. Recently, there has been
a growing interest in mobile sensor networks, along with the development of
robotics, and mobile sensor networks have enabled networked sensing system to
solve the challenging issues of wireless sensor networks by adding mobility into
many different applications of wireless sensor networks. Nonetheless, there are
many challenges to be addressed in mobile sensor networks. Among these, the
estimation for the exact location is perhaps the most important to obtain high
fidelity of the sensory information. Moreover, planning should be required to send
the mobile sensors to sensing location considering the region of interest, prior to
sensor placements. These are the fundamental problems in realizing mobile sensor
networks which is capable of performing monitoring mission in unstructured and
dynamic environment.

In this dissertation, we take an advantage of mobility which mobile sensor net-
works possess and develop localization and path planning algorithms suitable for
mobile sensor networks. We also design coverage control strategy using resource-
constrained mobile sensors by taking advantages of the proposed path planning
method.

The dissertation starts with the localization problem, one of the fundamen-
tal issue in mobile sensor networks. Although global positioning system (GPS)
can perform relatively accurate localization, it is not feasible in many situations,
especially indoor environment and costs a tremendous amount in deploying all
robots equipped with GPS sensors. Thus we develop the indoor localization sys-

tem suitable for mobile sensor networks using inexpensive robot platform. We



focus on the technique that relies primarily on the camera sensor. Since it costs
less than other sensors, all mobile robots can be easily equipped with cameras.
In this dissertation, we demonstrate that the proposed method is suitable for
mobile sensor networks requiring an inexpensive off-the-shelf robotic platform,
by showing that it provides consistently robust location information for low-cost
noisy sensors.

We also focus on another fundamental issue of mobile sensor networks which
is a path planning problem in order to deploy mobile sensors in specific loca-
tions. Unlike the traditional planning methods, we present an efficient cost-aware
planning method suitable for mobile sensor networks by considering the given
environment, where it has environmental parameters such as temperature, hu-
midity, chemical concentration, stealthiness and elevation. A global stochastic
optimization method is used to improve the efficiency of the sampling based plan-
ning algorithm. This dissertation presents the first approach of sampling based
planning using global tree extension.

Based on the proposed planning method, we also presents a general framework
for modeling a coverage control system consisting of multiple robots with resource
constraints suitable for mobile sensor networks. We describe the optimal informa-
tive planning methods which deal with maximization problem with constraints
using global stochastic optimization method. In addition, we describe how to
find trajectories for multiple robots efficiently to estimate the environmental field
using information obtained from all robots.

Keywords: Indoor localization system, Cost-aware path planning, coverage con-

trol for multi-robot



Chapter 1

Introduction

1.1 Mobile Sensor networks

As the future of computing moves toward pervasive and ubiquitous platforms,
we find ourselves in need of hardware, software, protocols and methodologies
that promote their practical use. Wireless sensor networks (WSNs) are a per-
fect example of this developing technology. WSNs, which are new information
technologies, collect information over the physical world via wireless sensing de-
vices (sensor nodes or mote) which is deployed in the physical world and have
already demonstrated their utility in a wide range of applications for monitoring,
event detection, and control, including environment monitoring, building comfort
control, traffic control, manufacturing and plant automation, and military surveil-
lance applications (see [1] and references therein). As WSNs and other embedded
computing technologies continue to evolve, it is imperative that we stay abreast
of the challenges that arise in order to enable a seamless transfer to general pub-
lic utilization. The greatest challenge we face when working with WSNs is their

resource limitations. Memory, processor, communication rage, power supply, and
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hardware quality have all been minimized in order to develop inexpensive, general-
use sensor nodes with small form factors. The advantage of this approach is that
hundreds of these devices can be deployed over a wide (possibly remote) area, at
little cost, and handle tasks for which PC-class devices would not be well suited.
Sensor network deployments are often determined by the application. Nodes can
be placed in a grid, randomly, surrounding an object of interest, or in countless
other arrangements. In many situations, an optimal deployment is unknown until
the sensor nodes start collecting and processing data. For deployments in remote
or wide areas, rearranging node positions is generally infeasible. Furthermore
faced with the uncertain nature of the environment, stationary sensor networks
are sometimes inadequate. However, when nodes are mobile, redeployment is pos-
sible. In fact, it has been shown that the integration of mobile entities into WSNs
improves coverage, and hence, utility of the sensor network deployment and shows
superior performance in terms of its adaptability and high-resolution sampling

capability [2]. Mobility enables more versatile sensing applications as well.

Mobile sensor networks (MSNs) are a distributed collection of mobile robots
each of which has sensing, computation, wireless communication, and mobility
capabilities. This network of mobile robots with sensors is usually deployed in
a large geographical area and collaborates among themselves to form a wireless
sensor network in performing collaborative sensing to monitor and improve the
quality of sensing of the environment. MSNs can efficiently acquire information
by increasing sensing coverage both in space and time, thereby resulting in robust
sensing under the dynamic and uncertain environments. While a mobile sensor
network shares the same limitations of wireless sensor networks in terms of its
short communication range, limited memory, and limited computational power,

it can perform complex tasks, ranging from scouting and reconnaissance to en-
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vironmental monitoring and surveillance by cooperating with other agents as a
group. There is a growing interest in mobile sensor networks and it has received

significant attention recently [3, 4, 5, 6, 7].

1.1.1 Challenges

Since WSNs consist of static sensors, several assumptions (e.g., known sensor
position and static topology) are required to obtain accurate information from our
environment. Thus it is important to understand how such assumptions change

when mobility is integrated into the sensor network.

e Localization. One of the most significant challenges for MSNs is to know
the exact locations of mobile sensors. The reliability of quality of informa-
tion obtained from sensors depends on how exact the location of sensor is.
In statically deployed sensor networks, Sensor position can be determined
once when initially deployed since there is no change in movement. However
in MSNs, location information for mobile sensors must be updated contin-
uously as they frequently transfer to different locations to cover the sensing

region. It requires real-time localization service, as well as time and energy.

e Path planning. Mobile sensors usually work in dynamic environment, so
they should be moved from one location to another to obtain more infor-
mation. Planning procedures should be performed prior to coordination of
mobile sensors. Path planning has been studied extensively, however, many
of the published techniques are inefficient for MSNs because they focus
on the length or time of the path or time without considering the sensing

region.

e Coverage control. MSNs can obtain the optimal information without requir-
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ing dense placement of sensors. However since mobile sensors are resource-
constrained, traversing to cover the whole region causes unnecessary energy
consumption. Therefore, mobile sensors should be controlled to obtain as
much information as possible with the minimum energy. There has been
many researches for coverage control problem, but most of them is limited

to the discretized space, so they cannot be easily applied to MSNs.

These are the goal of this dissertation. The main objectives of this dissertation

are

e development of robust indoor localization using inexpensive robotic plat-

form for mobile sensor networks;

e design cost-aware coordination system using mobile sensor nodes based on

the environmental parameters; and

e implementation and evaluation of information gathering strategy based on

the proposed cost-aware coordination.

There are other challenges in developing mobile sensor network system that are
not addressed in this dissertation. On the hardware side, we need an inexpensive
mobile sensor node which operates with low power consumption for a long-term
deployment. On software side, we need reliable and robust communication and

time synchronization protocols.

1.2 Overview of the Dissertation

Chapter 2 explains why existing methods for the challenging issues that are ad-

dressed in this dissertation are not suitable for mobile sensor networks and suggest
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the proposed methods are the solutions for the challenging issues in mobile sensor

networks.

In Chapter 3, we describe a vision-based coordinated localization algorithm for
mobile sensor networks with camera sensors to operate under GPS denied ar-
eas or indoor environments. Mobile robots are partitioned into two groups. One
group moves within the field of views of remaining stationary robots. The moving
robots are tracked by stationary robots and their trajectories are used as spatio-
temporal features. From these spatio-temporal features, relative poses of robots
are computed using multi-view geometry and a group of robots is localized with
respect to the reference coordinate based on the proposed multi-robot localiza-
tion. Once poses of all robots are recovered, a group of robots moves from one
location to another while maintaining the formation of robots for coordinated
localization under the proposed multi-robot navigation strategy. By taking the
advantage of a multi-agent system, we can reliably localize robots over time as
they perform a group task. In experiment, we demonstrate that the proposed
method consistently achieves a localization error rate of 0.37% or less for tra-
jectories of length between 715 cm and 890 ¢m using an inexpensive off-the-shelf

robotic platform. This chapter is based on [8].

Chapter 4 introduces the related works which evaluates the quality of the path
considering the environmental field and the primary algorithms which form the
basis of the proposed planning methods, which are sampling based path planning

algorithms and stochastic optimization based path planing algorithm.

In Chapter 5, we develop a cost-effective motion planning method for robots op-
erating in complex and realistic environments. While sampling-based path plan-
ning algorithms, such as rapidly-exploring random tree (RRT) and its variants,

have been highly effective for general path planning problems, it is still difficult
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to find the minimum cost path in a complex space efficiently since RRT-based al-
gorithms extend a search tree locally, requiring a large number of samples before
finding a good solution. This chapter presents an efficient nonmyopic path plan-
ning algorithm by combining RRT* and a stochastic optimization method, called
cross entropy. The proposed method constructs two RRT trees: the first tree is a
standard RRT* tree which is used to determine the nearest node in the tree to be
extended to a randomly chosen point and the second tree contains the first tree
with additional long extensions. By maintaining two separate trees, we can grow
the search tree non-myopically to improve the efficiency of the algorithm while
ensuring the asymptotic optimality of RRT*. From an extensive set of simula-
tions and experiments using mobile and humanoid robots, we demonstrate that
the proposed method consistently finds a path with the lowest cost faster than
existing algorithms. This chapter is based on [9].

Chapter 6 presents a novel informative path planning algorithm using an ac-
tive sensor for efficient environmental monitoring. While state-of-the-art algo-
rithms find the optimal path in a continuous space using sampling-based planning
method, such as rapidly-exploring random graphs (RRG), there are still some key
limitations, such as computation complexity and scalability. We propose an effi-
cient information gathering algorithm using RRG and a stochastic optimization
method, cross entropy (CE), to estimate the reachable information gain of each
node of the graph. The proposed algorithm maintains the asymptotic optimal-
ity of RRG and finds the most informative path satisfying the cost constraint.
We demonstrate that the proposed algorithm finds a (near) optimal solution ef-
ficiently compared to the state-of-the-art algorithm and show the scalability of

the proposed method.



Chapter 2

Background

We deal with challenging fundamental issues of mobile sensor networks such as
localization, path planning, and coverage control in this dissertation. Many re-
searchers have extensively studied to solve those problems. However, they have
focused on solving problems without considering conditions which mobile sensor
networks require. In this chapter, we introduce the existing methods for solving
localization, path planning, and coverage control problems and their limitations,

and suggest that the proposed methods are suitable for mobile sensor networks.

2.1 Localization in MSNs

In order to perform sensing or coordination using mobile sensor networks, local-
ization of all sensor nodes is of paramount importance. A number of localization
algorithms have been proposed for stationary sensor networks, e.g., [10, 11]. At
present, the most widely used method for localization is NAVSTAR Global Po-
sitioning System (GPS) [12]. Approximately 24 satellites included in the system
orbit the planet while transmitting the signal consistently. The location informa-

tion is determined using signals from at least four satellites (one signal is used to
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adjust the local clock uncertainty) based on trilateration method. Commercial use
GPS has less than 10 meters and 0.1 microsecond accuracy in position and time
synchronization, respectively. But they are applicable for outdoor environment
and precise indoor localization is still a challenging problem [13, 14]. (For more
information about various localization methods for wireless sensor networks, see
references in [10, 11, 13, 14].) One promising approach to indoor localization is
based on the ultra-wideband (UWB) radio technology [15]. But as stated in [15],
the minimum achievable positioning error can be in the order of 10 cm’s and it
is not accurate enough to control and coordinate a group of robots. In addition,
the method requires highly accurate time synchronization. In order to address
these issues, UWB based localization is combined with infrared sensors using a
team of mobile agents in [16]. However, it requires the deployment of UWB de-
tectors in advance, which is not suitable for mobile sensor networks operating

under uncertain or unstructured environments.

Localization using camera sensors has been widely studied in the computer vi-
sion community. Taylor et al. [17] used controllable light sources to localize sensor
nodes in a stationary camera network. A distributed version of camera localiza-
tion is proposed by Funiak et al. [18], in which relative positions of cameras are
recovered by tracking a moving object. The sensor placement scheme is presented
for the problem of minimizing the localization uncertainty in [19]. They proposed
a triangulation-based state estimation method using bearing measurements ob-
tained from two sensors. Meingast et al. [20] proposed a multi-target tracking
based camera network localization algorithm. The critical concept applied in [20)]
is the use of spatio-temporal features, an approach taken in this dissertation.
Tracks of moving objects are used as spatio-temporal features (tracks are de-

tected by a multi-target tracking algorithm from [21]). In order to find matching

10
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features over a pair of cameras, detection times of spatial features are used as
well as spatial features such as Harris corners and scale-invariant feature trans-
form (SIFT) keypoints [22]. Then the relative position and orientation between
cameras are computed using multi-view geometry. Since an incorrect matching
between spatio-temporal features is extremely rare compared to spatial features,
the method provided outstanding performance under a wide baseline and varying

lighting conditions.

But the aforementioned methods are designed for stationary camera networks
and are not suitable for dynamic mobile sensor networks. In fact, in mobile sen-
sor networks, we can take the advantage of mobility to improve the efficiency
of localization. For instance, Zhang et al. [23] proposed a method to control the
formation of robots for better localization. They estimated the quality of team
localization depending on the sensing graph and the shape of formation. A multi-
robot localization algorithm based on the particle filter method is presented in
[24]. They proposed a reciprocal sampling method which selects a small number
of particles when performing a localization process. Some authors have considered
cooperative localization of multiple robots using bearing measurements. Giguere
et al. [25] addressed the problem of reconstructing relative positions under the
condition of mutual observations between robots. The constraint was later re-
laxed by adding landmarks in [26]. They used nonlinear observability analysis to
derive the number of landmarks needed for full observability of the system and
an extended information filter was applied to estimate the states of a team of
robots using bearing-only measurements. Ahmad et al. [27] applied a coopera-
tive localization approach to robot soccer games. They modeled the problem as
a least squares minimization and solved the problem using a graph-based opti-

mization method, given static landmarks at known positions. Tully et al. [28]

11
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used a leap-frog method for a team of three robots performing cooperative local-
ization, which is similar to the proposed method. In [28], two stationary robots
localize the third moving robot from bearing measurements using an extended
Kalman filter. After completing a single move, the role of each robot is switched
and the process is repeated. In their experiments, robots covered a region of size
20m x 30m and showed a localization error of 1.15m for a trajectory of length
approximately 140 m. However, the experiments were conducted using an expen-
sive hardware platform including three on-board computers, four stereo cameras,
and a customized ground vehicle with many sensors. Hence, it is unclear if the
approach is suitable for an inexpensive off-the-shelf robotic platform considered
in this dissertation.

Therefore, we propose a coordinated localization algorithm for mobile sensor
networks under GPS denied areas or indoor environments using an inexpensive
off-the-shelf robotic platform. From experiments, we show that the proposed lo-
calization method provides consistently robust location information for low-cost
noisy sensors. By implementing the leap-frog method [28] using the same robotic
platform used in this dissertation, the proposed method achieves a localization
error rate which is more than 15 times better than the leap-frog method for

trajectories with a similar length.

2.2 Path planning in MSNs

Path planning has attracted much attention in the field of robotics due to its
importance. The goal of a path planning algorithm is to find a continuous tra-
jectory of a robot from an initial state to a goal state without colliding with
obstacles while maintaining robot-specific constraints. A popular path planning

algorithm is the rapidly-exploring random tree (RRT) [29] which is a sampling

12
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based method. It is applied and extended by many researchers under static envi-

ronments [30, 31] and dynamic environments [32, 33].

In contrast to RRT, which solves a single query problem, the probabilistic
roadmap (PRM) [34] is another sampling based path planning algorithm which
is applied to solve multiple query problems. However, since the performance is de-
termined by the number of samples, importance sampling based PRM approaches
have been proposed in order to select more samples near the region of interest
(see [35] and references therein). Recently, cross entropy (CE) [36], a combina-
tion of importance sampling and optimization, has been applied to path planning

problems [37].

However, the aforementioned methods are not suitable for mobile sensor net-
works which requires mobile sensors to be deployed in specific locations since
they do not account for cost which may accumulate in the given environment as
a robot moves. For instance, consider a nuclear power plant accident scenario,
in which some regions are contaminated by radioactive materials. In this sce-
nario, MSNs require robots to be deployed in disaster or hazardous environments
while performing search-and-rescue operation. If a map of radioactive levels is
available, it is desirable for robots to perform the search-and-rescue operation
along the path with the minimum exposure to radioactive materials. Finding
the minimum exposure path becomes a difficult problem if the radioactive map
shows complex terrains of radioactive levels, in addition to obstacles present in
the field. To handle such case a number of improvements have been made and
applied to more complex cost maps in recent years [38, 39, 40, 41, 42, 43]. In
order to increase the quality of a path, the nearest node of the tree to a ran-
dom point is selected by computing the cost along the path when RRT extends

a tree in [38, 41]. Ferguson et al. [39] modified the procedures of RRT such as
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random sampling, node selection for extension, and node extension when gener-
ating RRT trees sequentially to improve the quality of the resulting path. Ettlin
et al. [40] applied RRT to find the paths having low cost in rough terrain. They
computed the cost of trajectories by biasing RRT towards low-cost areas. In [42],
mobile robots are used to estimate environmental parameters of the field and
coordinated towards the location with the most information. However, they did
not consider the information gain along the trajectories of robots. In [43], Jaillet
et al. presented the transition-based RRT (T-RRT) which finds low-cost paths
with respect to a user given configuration space cost map based on a stochastic
optimization method. However, since [43] extends the tree using a finite set of
possible controls, the resulting paths can be suboptimal.

Motivated by this, we propose an efficient cost-aware planing strategy suitable
for mobile sensor networks by considering the given environment, where it has en-
vironmental parameters such as temperature, humidity, chemical concentration,

stealthiness and elevation.

2.3 Informative path planning in MSNs

In recent years, environmental monitoring has become increasingly important due
to factors, such as global warming, ozone layer depletion, deforestation, ocean pol-
lution, natural resource depletion, and population growth, to name a few. A num-
ber of different environmental monitoring areas have been studied extensively,
including marine monitoring [44], ecological monitoring [45], aerial monitoring
[46], and disaster monitoring [47, 48].

In order to monitor a large area, it is important to collect the most useful infor-
mation with available sensing resources. Guestrin et al. [49] proposed a method

for placing static sensors using the entropy while modeling the environmental
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parameter using a Gaussian process. However, it requires a dense deployment of
sensors to avoid sensing holes and static sensors are not suitable for time-varying
processes we often find in nature. To overcome the limitations of static sensors,
mobile sensor networks are introduced to increasing the sensing coverage both in

space and time.

With mobile sensor networks, active sensing is possible by taking advantage of
the mobility of mobile agents. We will call the problem of scheduling the trajectory
of a mobile sensor for collecting the most useful information as an informative

path planning (IPP) problem in this dissertation.

Singh et al. [47] presented an efficient informative planning strategy for max-
imizing the mutual information from a team of robots. In [50], an optimal IPP
algorithm using branch and bound was proposed to maximally reduce the vari-
ance of the field of interest based on exhaustive search. However, aforementioned
methods were applied to discretized search spaces, making it less scalable for large
problems. A sampling based path planning method, a rapidly-exploring random
tree (RRT) [29], has been applied to the IPP problem. Kwak et al. [51] applied
a genetic algorithm to decide which node to extend an RRT tree for informa-
tion gathering. A mobile target tracking controller was developed to maximize
the information gain using a limited number of mobile sensors in [52], where
the tracking accuracy along the path represents the information gain. While the
recently proposed RRT* [53] seems like a good candidate for solving an ITP prob-
lem, Bry et al. [54] has shown that RRT* is not suitable as for solving an IPP
problem with a cost constraint. The two key procedures of RRT*, selecting the
parent of any newly inserted node and rewiring the node and any nodes of an
RRT tree, are performed based on the consumed costs along the path to the

node. However, those procedures in IPP does not work since those procedures

15



Chapter 2. Background

are affected by not only the information gain at a node of an RRT tree but also
the cost constraint at the node.

Motivated by this fact, Hollinger et al. [55] proposed a rapidly-exploring in-
formation gathering (RIG) algorithm, which combines sampling-based motion
planning with combinatorial optimization. Since it follows the overall structure
of rapidly-exploring random graphs (RRG) [53], it can ensure that the optimal
path will be found as the number of samples approaches infinity. It introduced a
pruning strategy to improve the efficiency by reducing co-located nodes if they
cannot lead to the optimal solution. The pruning strategy requires to know the
upper bound on the possible reachable information gain using the given cost bud-
get for each node. The reachable information gain is used as the upper bound
and it is computed using a branch and bound algorithm [50]. However, while
robots move in a continuous space, the reachable information gain is calculated
by discretizing the state space. Hence, it requires heavy computation to perform
the branch and bound algorithm to compute all reachable information gains for
all nodes in a tree for a complex or large problem.

Therefore, we propose an efficient informative path planning suitable for mobile
sensor networks by modeling a coverage control system consisting of multiple

robots with resource constraints based on the proposed path planning method.
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Chapter 3

Robust Indoor Localization

In this chapter, we present a vision-based coordinated localization system suitable
for mobile sensor networks under GPS denied areas or indoor environments using
inexpensive robot platform. We take the advantage of mobile sensor networks.
In order to localize mobile robots, we first partition robots into two groups: sta-
tionary robots and moving robots. We assume each robot carries a camera and
two markers'. The moving robots move within the field of views (FOVs) of sta-
tionary robots. The stationary robots observe the moving robots and record the
positions of markers of moving robots. Based on the trajectories of markers, i.e.,
spatio-temporal features, we localize all the robots using multi-view geometry. Lo-
calization requires recovering relative positions, i.e., translation and orientation.
While the translation between cameras can be recovered only up to a scaling fac-
tor in [20], we can recover the exact translation using the known distance between
markers in the proposed algorithm.

A multi-robot navigation strategy is also developed using the rapidly-exploring

random tree (RRT) [29], which moves a group of robots from one location to

'For robots moving on a flat surface, a single marker with a known height can be used.
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another while maintaining the formation of robots for coordinated localization.
Since the proposed localization algorithm requires a certain configuration of a
robot team for good localization, the RRT algorithm is modified to guarantee
the configuration condition.

We have implemented the proposed algorithm on a mobile robot platform made
from an iRobot Create [56] mobile robot and conducted an extensive set of exper-
iments. From experiments, we have discovered a set of configurations of robots,
from which good localization is possible. We then applied these configurations
in our coordinated multi-robot localization algorithm. Our experimental results
show that the proposed method consistently achieves less than 1c¢m of localiza-
tion error for trajectories of length less than 100 ¢m and a localization error rate
of 0.37% or less for longer trajectories with length between 715 cm and 890 cm,
making it a promising solution for multi-robot localization in GPS denied or
unstructured environments.

In order to compare the performance of the proposed method, we have also im-
plemented the leap-frog method [28] using the same robotic platform used in this
dissertation. From experiments, the leap-frog method gives a localization error
rate of 5.6% for trajectories with the average length of 820.6 cm. The proposed
method achieves a localization error rate which is more than 15 times better than

the leap-frog method for trajectories with a similar length.

3.1 An Overview of Coordinated Multi-Robot Local-

ization

This section gives an overview of the proposed coordinated multi-robot localiza-

tion method. Suppose there are N robots and we index each robot from 1 to
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N. We assume that each robot’s locational configuration is determined by its
position and orientation in the reference coordinate system. Then the goal of the
multi-robot localization problem is to estimate positions and orientations of all
robots over time.

Let X;(k) = (P;(k), Ri(k)) be the locational configuration of robot i at time k
with respect to the reference coordinate system, where P;(k) € R™ and R;(k) €
SO(3) are the position and rotation of robot i at time k, respectively.? Then the

configuration of a multi-robot system at time k is
X(k) = (X1(k), Xa(k), ..., Xn (k).

The multi-robot localization problem is to estimate X (k) for all k£ from sensor
data.

Suppose that we have X (k— 1) with respect to the reference coordinate system
and computed relative positions, T;;(k), and orientations, R;;(k), for a pair of
robots ¢ and j at time k. Then we can easily compute positions and orientations
of all robots with respect to a single robot of choice. In order to map new positions
of robots in the reference coordinate system, we require that there is at least one
robot ¢ such that X;(k) = X;(k — 1). Then taking positions with respect to this
robot, we can recover the positions and orientations of all robots at time k£ with
respect to the reference coordinate system.

Based on this idea, we develop a coordinated localization algorithm. At each
time instance, we fix robot s and move other robots. Then we compute Tj;(k)
and R;j(k) for pairs of robots such that the pose of a robot can be computed
with respect to robot s. Finally, we compute X (k) based on X,(k—1). For k+1,
we fix another robot r and move remaining robots and continue this process. By

doing so, we can continuously estimate X (k) for all times.

250(3) is the special orthogonal group in R® (the group of 3D rotations).
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Now the remaining issue is how to estimate translations 7;;(k) and orientations

R;;(k) for pairs of robots. For this task, we make the following assumptions:
e Each robot carries a camera and markers.

e The internal parameters of cameras are known (e.g., focal lengths, principal

points, and distortion coefficients).
e Fach robot communicates with other robots via wireless communication.
e The clocks of all robots are synchronized.

e Either the distance between a pair of markers on a robot is known or the

height of a single marker is known when a robot is moving on a flat surface.
e At least two robots which capture images are stationary.

Figure 3.1 illustrates an overview of our method. Robots carrying markers move
within the FOVs of stationary robots. Each stationary robot captures an image,
detects markers, and localizes positions of markers in its image frame at time k.
The marker positions and image capture times are shared with other stationary
robots. For a pair of stationary robots ¢ and j, we can compute the relative
translation Tj;(k) and orientation R;;(k) from a pair of marker trajectories using
multi-view geometry as discussed in Section 3.2. At time k + 1, every stationary
robot except at least one robot moves and repeats the same process. There is
one remaining issue which is that we can only recover the relative positions up to
a scaling factor when only images are used. To recover the absolute translation
value, we need a known length. To resolve this issue, we assume that the markers
on robots are placed at known heights.

Since the minimum number of robots required for the proposed coordinated

localization algorithm is three, we will discuss our method using a mobile sensor
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Figure 3.1: An overview of the proposed coordinated multi-robot localization
algorithm. Robots in a moving group move within the field of view of stationary
robots. Robots in a stationary group track markers of moving robots and exchange
marker positions. The translations and orientations among stationary robots are
computed from collected marker tracks using multi-view geometry. Finally, all
robots are localized with respect to the reference coordinate system based on the

position of at least one fixed robot since last update time.

network of three robots for the ease of exposition in this dissertation. However,
the proposed method can be applied to a multi-robot system with a larger number
of robots. Furthermore, while a single moving robot is used in our discussion and
experiment, the method can be likewise applied to the case with multiple moving

robots using the multi-target tracking method of [20].

3.2 Multi-Robot Localization using Multi-View Ge-

ometry

In this section, we focus on a single step of the coordinated multi-robot localiza-

tion algorithm for localizing stationary robots by tracking a moving robot and
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present how to control the moving robot using visual data from stationary robots.

3.2.1 Planar Homography for Robot Localization

When two cameras view the same 3D scene from different viewpoints, we can
construct the geometric relation between two views using the homography if the
scene is planar. The homography between two views can be expressed as follows:

H:K(R+;WW>K4, (3.1)

where K € R3*3 is the intrinsic calibration matrix of the camera, R € SO(3) is
the rotation matrix, 7' € R3 is the translation vector, N is the unit normal vector
of the plane with respect to the first camera frame, and d is a scale factor which
represents the distance from the plane to the optical center of the first camera
[57].

We can recover {R, T, N} up to a scale factor from H using the singular value
decomposition. From this derivation, we obtain two possible solutions [57]. In
this application, corresponding points are located on the plane which is parallel
to the ground and the tilted angle of each camera is fixed, so we can compute the
normal vector of the plane. Among two solutions, we can find a unique solution
since the normal vector which is perpendicular to the plane is available in our
case. As explained in [57], from the singular value decomposition of H' H, we
obtain an orthogonal matrix V € SO (3), such that HTH = V Y. VT, where
V = [v1,v2,v3). Let u be a unit-length vector such that N = vy x v and v u = 0
and vs is orthogonal to N. Therefore, given vy and NN, we can solve for u. Once
we find u, we can form the new orthonormal basis {vs,u, N} and obtain R and

T as follows:

R=WU? and T =d(H - R)N, (3.2)
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where U = [vg,u, N] and W = [HUQ,HU,@HU], and & € R332 is a skew-
symmetric matrix. When we reconstruct positions of markers in the 3D space
using data points from the image plane, we can find the exact scale factor using
the distance between markers.

The homography can be computed from a number of pairs of feature corre-
spondences. We use the spatio-temporal correspondence features by tracking a
moving robot in the FOVs of scenes. We first segment a marker on the robot
at each time instance from image sequences of each camera. It is performed by
applying the maximally stable extremal regions (MSER) detector [58], a blob de-
tection method. A centroid of the marker is used to build a marker image track.
Even though the above detection algorithm for extracting marker positions of the
moving robot is robust, it may contain outliers, which do not fit the 2D plane,
such as debris on the ground or measurement errors. In order to robustly estimate
the planar homography, we used the random sampling consensus (RANSAC) al-
gorithm [59].

3.2.2 Image Based Robot Control

The trajectory of a moving robot can influence the quality of localization. Hence,
it is desirable to move a robot such that the localization error can be minimized.
Since a robot has to be controlled using data from cameras, it can be seen as
a visual servo control problem. In visual servo control, namely the image-based
visual servo (IBVS) approach, the control input to the moving robot is computed
based on the error generated in the 2D image space [60]. However, in order to
compute the control input, visual servoing requires the pseudo inverse of an in-
teraction matrix which represents the relationship between the velocity of the

moving robot and the time derivative of the error. Since the interaction matrix
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has six degrees of freedom, such a process requires at least three feature points
at each time. Since we only consider a single marker in the present dissertation,
the visual servoing approach is not applicable and an alternative robot controller

is required.

Robot trajectory design for better localization

We have considered three scenarios in order to identify an ideal robot trajectory
for minimizing the localization error and they are shown in Figure 3.2. The consid-
ered cases are (1) points along the boundary of the common FOV by two cameras
(Figure 3.2(a)), (2) uniformly scattered points inside the FOV (Figure 3.2(b)),
and (3) randomly placed points inside the FOV (Figure 3.2(c)). For each case,
we randomly selected 50 point pairs and performed the proposed localization al-
gorithm. We have repeated the process for 500 times. For each run, we computed
the estimation error ¢; = |ch — dirye|, for i = 1,2,...,500, where d; is the esti-
mated distance between two robots for the i-th run using our localization method
and dye 18 the ground truth distance. Average localization errors are shown in
Figure 3.3. It can be seen that points along the boundary of the FOV gives the
lowest localization error. The simulation was conducted using MATLAB based
on parameters of cameras used in experiments. A point is projected to the image
plane with an additive zero-mean Gaussian noise with a standard deviation of

one pixel.

Control

From the previous section, we have found that we can lower the localization error
using feature points located at the boundary of the FOV. Based on this finding,

we design an image-based robot controller which makes the moving robot follow
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Figure 3.2: Examples of three scenarios for an ideal trajectory: (a) boundary, (b)

uniform, and (c) random. The left figure shows the top view and the middle and

right figures show two separate camera views.
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Figure 3.3: Average localization errors for three different scenarios considered in
Figure 3.2. The average error is computed from 500 independent runs and the

error bar shows one standard deviation from its mean value.

the boundary of the common FOV of stationary robots. One difficulty is that a
moving robot can move beyond the FOV due to communication delay. In order to
prevent this problem, we first set the boundary within the image frame as shown
in Figure 3.4(a). The common FOV of two cameras on the ground plane is shown

in Figure 3.4(Db).

Since the actual heading of a moving robot is not available, it has to be esti-
mated from image data. We estimate the heading direction of the moving robot
using a batch least square filter over a finite window from measurements from
both cameras. When the moving robot is near the boundary of a camera, the cor-
responding stationary robot sends a command to the moving robot to rotate by
a predefined amount for a short duration. The direction of the rotation is deter-
mined by the normal vector of the boundary and the estimated heading direction.

The moving robot combines commands from stationary robots and changes its

26



Chapter 3. Robust Indoor Localization

3D region for boundary

=== |mage boundary

CAM 1

(a) (b)

Figure 3.4: (a) An example of a boundary within an image frame. (b) The common

FOV of two cameras on the ground plane.

heading for a short duration. While this is an extremely simple controller, we
have found it very effective for controlling the robot to move along the boundary
of the FOV since we cannot reliably estimate the position and heading of the

moving robot using a small number of noisy marker detection results.

3.3 Multi-Robot Navigation System

This section details how we implement the multi-robot navigation system includ-
ing the robot platform used in the experiments and a multi-robot navigation
method which moves a group of robots from one location to another while main-

taining the formation of robots for coordinated localization.
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3.3.1 Multi-Robot System

For our experiments, we used iRobot Create wheeled mobile robots [56] as mobile
nodes in our mobile sensor network. The developed mobile platform is shown in
Figure 3.5(a), which is equipped with a PS3 Eye camera, an ASUS notebook
which runs Linux OS, and a white LED which works as a marker. WiFi (IEEE
802.11) is used for communication among robots. Each camera has a resolution of
320 x 240 pixels and runs at 40 frames per second (fps). As explained in [61], we
used a one-server, two client model for communication. However, unlike [61], in
this work, stationary robots consistently check the visibility of the moving robot
to prevent the moving robot from going beyond the common FOV as explained in
the previous section. The time synchronization operation is implemented as fol-
lows. Since each robot can have a different local time, all clocks are synchronized

using the clock of the server at each time a stationary robot moves.

Y

A

castor
wheel

Right wheel

> X

(a) (b)

Figure 3.5: (a) An iRobot Create based mobile robot platform. (b) A two-wheeled

differential drive robot.

28



Chapter 3. Robust Indoor Localization

We used the two-wheeled differential drive robot dynamics in simulation and
experiments. The parameters of the mobile robot are shown in Figure 3.5(b).
Let [ be the distance between the two wheels. Recall that ¢, and g, denote the
position of a robot with respect to x and y axis, respectively, and gy denotes its
heading. The dynamics of a two-wheeled differential drive robot can be expressed

as follows, where v, and v; are the right and left wheel velocities, respectively.

¢(t+ At) =

(

g () + 20 sin (1(t)) cos (0(t) + w(t)) if w(t) # 0

q2(t) + v(t) At cos (6(t)) otherwise

qy(t + At) =

,

gy (1) + 28 sin (w()) sin (0(t) + @(t)) i w(t) £ 0

ay(t) +v(t) At sin (6(t)) otherwise
qo(t + At) = qp(t) + w(t)At, (3.3)
where w(t) = w(tz)m, v(t) = M is the translational velocity, and w(t) =

M is the angular velocity [62].

We can not directly specify v and w to reach the specific position, because we
can not compute v, and v; from (3.3). Thus, we consider only two motions by
a robot (going-forward and turning) to reduce the modeling error and simplify
its control. In order to correctly model the physical mobile platform used in the
experiment, we have conducted a number of experiments to measure odometry
errors. For the going-forward motion, we made a robot move forward at four
different distances from 5cm to 20 cm at a speed of 20 cm/s, 15 times each. The

odometry error is shown in Figure 3.6(a). It is interesting to note that there is
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a bias term, i.e., the going-forward motion shows a bias of 0.8 cm at 20 cm/s.
For the turning motion, we have rotated a robot at different angular velocities
15 times each and the average angular error is shown in Figure 3.6(b). Since
we obtained the similar results for the negative angular velocities, the results
for the negative are not illustrated in this figure. The average angular error and
its variance tend to fluctuate depending on the angular velocity. Especially for
angular velocities less than 2°/s, the variance of the angular error is relatively
large with respect to the magnitude of the velocity (see the inset in Figure 3.6(b)).
But the mean increases as the angular velocity gets bigger, except 10°/s. Based
on the experiments, we have obtained a more precise dynamic model of the mobile
platform using (3.3). When a robot moves forward, its heading does not change,

hence, the dynamics for the going-forward motion is as follows:

@(t+At) = q.(t) +vcos(0(t)) At + ay
qy(t+At) = q,t) +vsin(0(t))At + ay
q@(t+At) = qo(t) + oz, (3.4)

since v, = v; and w = 0. The dynamics for turning becomes:

@t +At) = q(t)+as
qy(t+At) = qy(t) + o3
2
go(t+At) = qot) + <l” + a4> At, (3.5)
since v, = —v; and v = 0 (i.e., the position of the robot is stationary). Here,

a1, g, a3, and a4 are random variables representing noises including bias terms

found from the experiments.
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Figure 3.6: Average drift error for different movements. The average drift error
is computed from 15 movements and one standard deviation is shown as an error
bar (3.6(a)-3.6(b)). The inset in (b) is a magnified odometry error (deg) graph

for angular velocity less than 2°/s.
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3.3.2 Multi-Robot Navigation

We now consider moving a group of robots from one location to another lo-
cation while localizing all robots based on the proposed multi-robot localiza-
tion algorithm. We develop a multi-robot navigation algorithm based on the
rapidly-exploring random tree (RRT) [29] which is a sampling-based path plan-
ning method. It quickly searches over a nonconvex configuration space by sam-
pling a random point and incrementally builds a navigation tree by extending the
tree towards the random point. While an RRT can be readily applied to a single
robot, it is not straightforward to apply to a group of robots with constraints. For
our multi-robot localization method, robots must satisfy a requirement about the
configuration of robots, namely the distance between stationary robots and an-
gles between them for better localization (see Section 3.4.1 for more information
about the constraints).

Let Xieam(k) be the locational configuration of two stationary robots, i.e.
Xiteam (k) = [Xa(k), Xp(k),0(k)], where X4(k) € X and Xp(k) € X are lo-
cational configurations of robots A and B, respectively, at time k, and (k) is
the angle between two stationary robots, which is graphically illustrated in Fig-
ure 3.7. Recall that X;(k) consists of the position P;(k) and the rotation R;(k).
In order for a team of three robots to correctly localize, the following conditions

must be satisfied.

di < [|[Pa(k) — Pp(k)|| < d2

6, < 0(k) < 65, (3.6)

where 0(k) is computed using R4(k) and Rp(k) and the parameters dy, ds, 61,
and Oy are experimentally determined as discussed in Section 3.4 and fixed for

the team. In order for a group of robots move, one of the stationary robots has to
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Robot B moves

y axis

Figure 3.7: Illustration of the region Xyove(k). Blue and red circle represent initial
positions of robot A and B and blue and red arrow represent the headings of
robots, respectively. Two black arrows with a gray region for each robot represent

the field of view of each robot. The region with green color represents Xyove(k).

move and there is a chance that the condition (3.6) can be violated. For a group
of robots to navigate while localizing, the condition (3.6) has to be satisfied at

all times.

Suppose that robot A is stationary and robot B moves forward. Then the
region satisfying the first condition of (3.6) can be expressed as Xpove(k), the
green region in Figure 3.7. The second condition of (3.6) can be easily satisfied
by rotating robot B with respect to the heading of robot A. Path planning of

a team of robots satisfying the condition (3.6) is implemented using the RRT.
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However, since one robot moves and the other robot is stationary, we have to
alternatively move one robot at a time while satisfying (3.6) at each step. The
procedure is similar to scheduling steps of a humanoid robot to move from one
location to a target location while avoiding obstacles. Results of RRT based path

planning for a robot team are shown in Section 3.4.

3.4 Experimental Results

3.4.1 Coordinated Multi-Robot Localization: Single-Step

We first performed experiments for the single-step of the coordinated multi-robot
localization algorithm in order to find a multi-robot configuration which results
in good localization.

Figure 3.8 shows our experiment setup. We also used the Vicon motion capture
system to collect the ground truth data in order to measure the performance of our
algorithm. We conducted our experiments at four different baselines, d, between
two stationary robots (d = 60,80, 100,120 ¢m). For each baseline, we tested five
different angles, 6, between robots ( = 0°,10°,20°,30°,40°). See Figure 3.8(c)
for how d and 6 are defined. Hence, there is a total of 20 cases. For each case,
we collected about 250 marker positions of a moving robot and ran 500 times
using RANSAC. Then we localized robots using the proposed algorithm. The
estimation error was computed using the ground truth locations obtained from
the Vicon motion capture system.

Figure 3.9(a)-3.9(d) show the results of all 20 cases. The distribution of local-
ization error is shown as a histogram for each case. The bin size of a histogram
is 0.5cm and the color of a bin represents the number of runs with localization

errors belonging to the bin. When this number is large, the bin color is red and
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()

Figure 3.8: (a) Photos of the Vicon motion capture system installed in our lab.
The Vicon motion capture system is used for providing the ground truth values.
(b) An image obtained from the Vicon with robots placed on the reference coor-
dinate system. (c) The experimental setup parameters. d is the distance between

two stationary robots and 6 is the angle between them.
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Figure 3.9: Localization error distributions of 20 cases at different baselines (d =
60, 80,100, 120 cm) and angles (6 = 0°,10°,20°,30°,40°) between robots. Each
case has 500 runs. An interval of each bin is 0.5cm and the color of each bin
represents the number of runs with localization error belonging to the interval.

A white circle represents the mean error of 500 runs.

the bin color is dark blue when this number is low. For instance, when d = 60 and
0 = 0, more than 200 runs resulted in error between 0.5 cm and 1.0 cm. A white

circle represents the mean error from 500 runs for each case. For d = 60 and 6 = 0,
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Figure 3.10: Scatter plot of the localization error as a function of the number of

overlapping pixels between two cameras.

the mean error is 0.5 cm. As shown in Figure 3.9(a) and 3.9(b), when the baseline
is 60 cm or 80 cm, the mean error is within 1cm, except when (d = 80,6 = 0)
and (d = 80,6 = 10). On the other hand, as shown in Figure 3.9(c) and 3.9(d),
the mean errors are relatively high for d = 100 cm and d = 120 ¢m, especially
at small angles. This is due to the fact that the overlapping area between two
cameras is small for those cases. We plotted the localization error as a function
of the number of overlapping pixels in Figure 3.10. Clearly, the size of the over-
lapping area determines the localization performance and we must account this
when designing a multi-robot localization algorithm. Since the baseline distance
and the angle between robots can be configured in our multi-robot localization
algorithm for the best performance, the experimental results show how we should
configure robots in our coordinated multi-robot localization algorithm as we do

in the next experiment.
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RobotA  RobotB| |1

STEP 1 STEP 2 STEP 3 STEP 4 STEP 5 STEP 6

Figure 3.11: Multi-step experiment. The length of each red segment is the distance
from the original position of robot A in step 1 to the new position of the robot
with motion. Dashed lines show the relative poses that are computed at each step

of the algorithm.

3.4.2 Coordinated Multi-Robot Localization: Multi-Step

In this experiment, we localize a group of robots as they move from one place to
another as described in Section 3.3. Based on the previous experiment, we found
that a baseline between 60 ¢cm and 80 cm and an angle between 30 ° and 40 © were

ideal and this configuration was used in this multi-step experiment.

Figure 3.11 shows the movements of two robots going forward at different steps
of the algorithm. A marker on Robot C is used for localization but Robot C is not
illustrated in this figure. Because the space covered by the Vicon motion capture
system was limited, we were able to perform six steps of the algorithm. Table 3.1
shows localization errors from the experiments. In the table, “seg” represents the
line segment shown in Figure 3.11, “true” is the length of the segment computed
by Vicon, and “est” is the length computed by our algorithm. At step 1, the
difference between ground truth value and estimation value is 0.02 cm. After step
1, robot A goes forward for about 40 ¢cm and turns to the left and robot B does

not move. Since we know the angle between robot A and B from rotation matrix
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seg true est seg true est

a-b || 77.1dem | 77.12c¢m ||| a-b | 77.1dem | 77.12cm
b-c || 85.76cm | 85.72cm ||| ac || 36.22cm | 36.23cm
c-d || 78.29cm | 78.42cm ||| a-d || 85.73cm | 85.21cm
d-e || 88.16¢cm | 87.82¢cm ||| a-e 74.0lem | 73.98cm
e-f || 80.47cm | 80.05¢cm || a-f || 107.82¢cm | 107.4cm

f-g || 89.82cm | 89.53¢cm ||| a-g || 109.73¢em | 109.36 cm

Table 3.1: Results from the multi-step experiment. (See Figure 3.11 for segment
labels)

R computed in step 1, when robot A rotates, we can maintain the pre-defined

angle 6.

At step 2, the coordinate system with respect to robot B is the reference
coordinate system and the localization error for the segment a —c is only 0.01 cm.
After step 2, robot A is stationed and robot B moves forward for about 40 cm.
Again, we can maintain the pre-defined distance d by computing the position of
robot B in step 2 with respect to the coordinate of robot A in step 1. And this
process is repeated as shown in Figure 3.11. For all steps, the localization error
was kept within 1 cm and the localization error of the longest segment a — g was

only 0.37 cm.

We also conducted the going forward experiments in the hallway to demon-
strate its performance over a long distance (see Figure 3.12). A robot with a
white LED plays the role of the moving group and two robots with a camera
forms the stationary group. Table 3.2 shows localization results from the exper-

iments in the hallway. For trajectories with length from 715c¢m to 890 ¢m, the
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Figure 3.12: Photos from the hallway experiment. A group of robots moves along

the straight line (black dotted line). At each step, a robot with an LED marker

moves while the remaining two robots localize based on the movement of the

robot with LED using the proposed algorithm.

Case || Robot | True Est. Error | Err. Rate
1 A 730cm | 728.1cem | 1.9em 0.26%
2 A 732cm | 733.5¢em | 1.5em 0.20%
3 A 715em | 716.7e¢m | 1.7em 0.23%
4 A 890cm | 886.7cm | 3.3¢cm 0.37%
5 A 857cm | 854.5¢e¢m | 2.5¢em 0.29%

Table 3.2: Results from the multi-step experiment in the hallway.
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achieved localization error is between 1.5 cm and 3.3 ¢cm, making the localization
error rate less than 0.37% of the length of the trajectory of the robot. Further-
more, the group of robots can follow the straight line without deviating from the

desired path. See Figure 3.12 for photos from the experiments.

Next, we tested if a group of robots can make turns to avoid obstacles. Fig-
ure 3.13 shows snapshots of a multi-robot system making left and right turns.
We first generated a desired path with right or left turns for the multi-robot
system, satisfying the condition (3.6) in Section 3.3.2. Then a multi-robot sys-
tem follows the given trajectory while localizing all robots. For each turn, four
independent trials were performed and the results are shown in Figure 3.14(a)
and Figure 3.14(b). Figure 3.14(c) shows localization errors of each robot as a

function of time.

Lastly, we show the results from multi-robot navigation. Snapshots from the
experiment are shown in Figure 3.15. Given a path found by the RRT-based
multi-robot navigation algorithm, a multi-robot system moves cooperatively while
performing localization. Figure 3.15(a) shows the planned path of the stationary
robot found by the RRT-based multi-robot path planning algorithm to navigate
to the goal location. Purple and green circles represent the planned positions
of robot A and B, respectively. Blue and red arrows represent their respective
headings. Figure 3.15(b) shows snapshots from the experiment showing the turn
made by the multi-robot system. Black lines are the actual trajectories of robots
following the planned path. Figure 3.16 shows results from obstacle avoidance
experiments using the RRT-based multi-robot navigation algorithm and they are
taken from different overhead cameras. As shown in the figure, robots can safely

navigate to reach the goal location while avoiding obstacles.

Localization under the GPS denied or unstructured indoor environment is a
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Figure 3.14: Estimated locations from turning experiments. Blue and magenta

circles represent estimated positions of robot A and B, respectively. Green and

yellow diamonds represent ground truth positions of robot A and B, respectively.

(a) Left turn. (b) Right turn. (c) Localization errors as a function of time.
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challenging problem. But the experimental results show that our algorithm can

provide a promising solution to this challenging localization problem.

3.5 Discussions and Comparison to Leap-Frog

This section provides a short discussion on some practical aspects of the proposed

localization algorithm and a comparison to the leap-frog method [28].

3.5.1 Discussions

Our experimental results in Section 3.4.2 suggests that precise localization is
possible using an inexpensive robotic platform using camera sensors in an indoor
environment with obstacles. Even if the environment is cluttered with obstacles,
the proposed multi-robot navigation algorithm can find a path for the team of
robots if a feasible path exists, following the probabilistic completeness of RRT
[29].

The proposed coordinated localization algorithm requires regular communica-
tion between moving robots and stationary robots to make sure that the moving
robots are within the field of view of stationary robots. Hence, a poor communi-
cation condition may affect the performance of the system since it will be difficult
to control moving robots reliably. However, since the speed of the moving robot
is known, we can predict when moving robots have to change their headings if
communication delay can be estimated.

In order to match marker tracks, it is required to synchronize times of all robots.
Mismatched timestamps can cause inaccurate localization. We have conducted a
simple experiment to test the sensitivity of the proposed method against the time
synchronization error. Based on collected data which has the time synchronization

error less than 0.005 second, we have introduced time synchronization errors
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Trajectory combination

3.5 —@—Robot1
—&—Robot2

(b)

Figure 3.15: (a) A trajectory found by the proposed multi-robot navigation algo-
rithm. Purple circles and blue arrows represent the planned positions of Robot A
and corresponding headings, respectively. Green circles and red arrows represent
the planned positions of Robot B and corresponding headings, respectively. (b)
Photos from the experiment following the trajectory. Black lines show the actual

trajectories of robots.
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Chapter 3. Robust Indoor Localization

to the dataset. Our experiment shows that the localization error is kept under
lem for a time synchronization error of 0.05 second, showing the robustness
of the proposed method against the time synchronization error. However, we
have observed an increase in the localization error when the time synchronization
error is larger than 0.05 second. Hence, it is desirable to keep the maximum
possible time synchronization error under 0.05 second or less. This condition can
be satisfied in most cases. However, a wireless protocol with real-time guarantee,
such as the guaranteed time slot (GTS) of IEEE 802.15.4 [63], can be utilized to

avoid any unexpected time synchronization delays.

3.5.2 Comparison to Leap-Frog

We have also implemented the leap-frog localization method proposed in [28] for
comparison. In its original implementation, the authors used the Learning Applied
to Ground Vehicles (LAGR) platform equipped with three on-board computers,
wheel encoders, and a set of four stereo cameras. However, since it is unclear if the
approach is suitable for an inexpensive off-the-shelf robotic platform considered
in this dissertation, we implemented the leap-frog algorithm using the robotic
platform used in this dissertation, which includes PS3 Eye cameras, a white LED,
and an iRobot Create platform as shown in Figure 3.17(a). A snapshot from
the leap-frog localization experiment is shown in Figure 3.17(b). We placed six
cameras on the robot as shown in Figure 3.18 to emulate an omnidirectional
camera system. Note that a PS3 Eye camera has 75 degree field of view (FOV). An
omnidirectional camera is required for the leap-flog system since measurements
for its extended Kalman filter (EKF) algorithm is relative bearing angles.

In [28], a red ball is placed on each vehicle and a circle Hough transform is used

to detect the position of other vehicle. In our implementation, we used an LED
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Figure 3.17: (a) A robot platform developed for leap-frog localization [28]. (b) A

photo from the leap-frog localization experiment.

'CAM

Figure 3.18: The configuration of six directional cameras for emulating an omni-
directional camera. The gray region represents the FOV of each camera placed

on iRobot Create.
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Chapter 3. Robust Indoor Localization

as a marker for this purpose. In order to estimate the bearing angle using our
omnidirectional camera system, we used the following second-order polynomial

equation:

01D = aq® + bg + ¢, (3.7)

where 01, gp is the relative angle of an LED with respect to the observing robot, ¢
is the position of a detected LED in the horizontal coordinate, and a, b, and ¢ are
parameters of the polynomial. We collected 30 data pairs for each omnidirectional
camera system and estimated values of a,b, and ¢ based on the ground truth
obtained from Vicon. Using estimated parameters, we found that the mean and
standard deviation of the bearing angle error between the ground truth and the
estimated bearings are 0.380 ° and 0.286 °, respectively. The error is small enough
and (3.7) is used to estimate the bearing angle.

The key feature of the leap-frog localization is the extended Kalman filter
(EKF) formulation using bearing-only measurements and multi-robot formation
which maximizes the information gain [28]. We acquired the bearing angle by
extracting the position of the LED using the MSER detector. Before applying the
MSER detector, we made a differential image between an image with an LED on
and an image with an LED off, to get rid of noise. We also implemented a leap-
frog formation controller by alternating go-straight and turn motions. After each
movement, we performed the EKF localization using bearing-only measurements
acquired from robots. Since there are blind spots as shown in Figure 3.18, an
additional routine for handling blind spots is required. This is implemented by
adding additional go-straight motions inside the leap-frog algorithm.

We first conducted a simulation to verify the localization performance of the
leap-frog algorithm based on the dynamical model of robots given in Section 3.3.1.

The moving robot follows the leap-frog path by alternating go-straight and turn
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motions. The initial distance between robots is 160 cm and the number of pairs of
movements required to change the role of each robot is five (a movement pair con-
sists of go-straight and turn motions). We added a Gaussian noise with variance
of one to each bearing measurement. The localization result of the simulation is
shown in Figure 3.19. The estimated positions of three robots are shown in red,
green, and blue diamonds, respectively, and the true positions of three robots are
shown in red, green, and blue circles, respectively. Red, green, and blue squares
with black contour represent the goal positions of each robot. We performed a to-
tal of 100 trials. The average localization error of each robot is given in Table 3.3.
We also checked the results when we changed the number of movement pairs. As
shown in Table 3.3, the number of movement pairs does not have an effect on the

results, so we applied five movement pairs in the physical experiment.

The localization results of physical experiments using the leap-frog method
using three robots are shown in Figure 3.20. The localization error of robot 3
for the trajectory with length of 840 ¢cm was 34 ¢m and the localization error of
robot 1 and robot 2 are 46.3 cm and 58.6 cm, respectively. We can see that the
localization error gets larger as each robot moves a longer distance. Note that
the localization error of the actual experiment is relatively larger than that of
simulation, showing the difficulty of controlling and localizing inexpensive robots.
A comparison of the leap-frog method with the proposed algorithm is summarized
in Table 3.4. The proposed algorithm shows an error rate which is 15 times smaller
than the leap-frog method. The result indicates that the proposed algorithm is

more suitable for inexpensive robotic platforms.
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Figure 3.20: Localization errors from the leap-frog localization experiment.

No. Movement Pairs 5 10 15
Robotl 18.8cm | 17.2cm | 19cem
Robot2 229cm | 21.dem | 23cem
Robot3 14.8cm | 14.1cem | 15.4¢em

Table 3.3: Average localization errors for different step sizes (method: leap-frog).

Algorithm || Mean Distance Error Error Rate

Leap-frog 826.9 cm 46.3 cm 5.6%

Proposed 715 ~ 890 cm 1.5~ 3.3cm | 0.20% ~ 0.37%

Table 3.4: A comparison between the proposed method and the “Leap-Frog”

method.
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3.6 Summary

In this chapter, we have presented a coordinated localization algorithm for mobile
sensor networks. The algorithm is designed to solve the challenging localization
problem under the GPS denied or unstructured indoor environment by taking the
advantage of the multi-agent system and mobility in mobile sensor networks. The
proposed algorithm can solve the multi-robot navigation problem by considering
the configuration constraint of a group of robots. Our experiment shows that
there exists a configuration of robots for good localization and this configuration is
applied to find a trajectory which makes a group of robots move from one location
to another location. We also compared the performance of the proposed algorithm
against the leap-frog method using an inexpensive off-the-shelf robotic platform.
In experiments, the proposed method achieves a localization error of 0.37% or less
for trajectories of length between 715 cm and 890 ¢cm. The experimental results
show that the localization error increases as a robot travels a longer distance. This
propagation of error can be reduced by detecting landmarks in the environment

and this is our future research topic.
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Chapter 4

Preliminaries to Cost-Aware

Path Planning

As explained in Chapter 2, path planning suitable for mobile sensor networks
should consider the environmental field when determining the path by improving
the quality of the path based on the costmap which represents the environmental
parameter. Thus, we assume an availability of a costmap of the field of inter-
est, which represents environmental parameters, such as temperature, humidity,
chemical concentration, wireless signal strength, stealthiness, and terrain eleva-
tion. Our objective is to design a path planning algorithm which guides a robot to
follow a trajectory from the initial location to the destination with the minimal
accumulated cost, along with the terminal cost and travel time.

We propose a cost-aware path planning algorithm for complex configuration
spaces inspired by [64], which addresses the position-dependent path planning
problem (PDPP). In a PDPP problem, the cost is solely dependent on the position
of a robot. The algorithm proposed in [64] constructs an RRT tree by extending

the tree using cross entropy path planning [37], which optimizes the trajectory
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distribution using the stochastic optimization method called cross entropy (CE)
[65]. In this dissertation, we consider a more general problem in which the cost
is a function of the internal state of a robot. We refer this problem as a state
dependent path planning (SDPP) problem.

This chapter first introduces the recent algorithms which considers the quality
of the path and then studies the primary algorithms which form the basis of our

proposed methods.

4.1 Related works

Recently, a number of cost-aware path planning algorithms have been proposed.
Suh and Oh [64] presented a sampling-based path planning algorithm which finds
a low-cost path with respect to a continuous costmap representing the environ-
mental field. For planning a path, they used RRT and extended the search tree
using a stochastic optimization method, called cross entropy (CE) [65]. In [66],
a solar-intensity map is used as a costmap and a path which can charge the
battery the most is found using dynamic programming. Murphy et al. [67] con-
structed a costmap representing traversability using aerial images and performed
path planning using the A* search algorithm with heuristics to find a less riskier
path. Above mentioned algorithms solve instances of PDPP since they consider
an instantaneous cost at each location.

On the other hand, the accumulated cost in SDPP is determined depending
on how a robot has reached the state. An energy efficient planning can be con-
sidered as an instance of SDPP, since the energy consumption at the current
state depends on previous states. There are a number of studies on energy effi-
ciency of motion planning for ground mobile robots [68, 69, 70, 71, 72, 73, 43|
and humanoid robots [74, 75, 76, 77, 78]. In [68, 69, 70|, energy-efficient path
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planning algorithms were developed for a 2D plane with no changes in elevation.
They determine the velocity schedule of a moving robot by minimizing energy
consumption given a predetermined path [68] or finding a path using the A*
algorithm [69] or dynamic programming [70]. On the other hand, [71] and [72]
considered terrains with different elevations. Sun et al. [71] examined the energy
consumed by a robot along the path in terms of friction and gravity, but they
did not take into account the optimal velocity profile. In [72], a vehicle velocity
profile was considered to minimize the energy consumption by an electric vehicle
based on dynamic programming. However, they focused on the efficiency of in-
wheel motors to maximize the travel distance on a predetermined road. Kwak et
al. [73] minimized the consumed energy along a path when planning on a rough
terrain based on particle-RRT (pRRT) proposed in [30] which extends a tree by
using particles for estimation of the distribution of states at each node of the
tree under the environment with uncertainty caused by input. They fused the
energy function with the likelihood of successful tree extension in pRRT. Given a
costmap representing the terrain with different elevations, Jaillet et al. [43] found
a low-cost path using RRT but extending the RRT tree based on the Metropolis

criterion.

Unlike the approaches using a ground mobile robot, Michieli et al. [74] per-
formed the energy analysis of a humanoid robotic arm by representing the arm
as a complex energy chain of mechanical and electrical components. Kulk et al.
[75] proposed a low-stiffness walk of a humanoid robot by manually tuning the
parameter on each motor in the robot, through a modification in the low-level
controller. They used the electric current data measured with built-in current sen-
sors to evaluate the performance of their work. The design of an energy-efficient

and human-like gait for a humanoid was presented in [76] and [77], which focused
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on a gait with low energy consumption. Kalakrishnan et al. [78] proposed a mo-
tion planning method based on a cost function which includes torque costs but
without an experimental validation.

Recently, RRT*, which guarantees the asymptotic optimality, and its variants
have been introduced [53, 79, 80, 81, 82]. Given a cost function, RRT* finds the
optimal solution as the number of samples increases to infinity. In [83, 84, 85],
modified RRT and RRT* were applied to manipulation tasks in high dimensional
spaces. However, these algorithms focus on finding the shortest path without
considering the energy consumed by a robot along the path. Hence, they are not
suitable for energy-efficient motion planning.

The approach proposed in this dissertation improves efficiency in a complex
terrain or a high dimensional space while ensuring the asymptotic optimality of
RRT*. It has an anytime flavor in the sense that the proposed algorithm provides
a near optimal solution and monotonically improves its solution towards the

optimal one as more operations are allowed

4.2 Sampling based path planning

In general, the path planning problem is known to be PSPACE-hard problem
in the computational point of view [86, 87] and the computation complexity
increases exponentially as the dimension of the configuration space or the number
of the obstacles increases [88].

In order to overcome such computational burden, many sampling based path
planing approaches have been introduced during the last decades. They only
require a collision detection algorithm without explicit construction of obstacles
in the configuration space and incrementally search the configuration space. Thus,

sampling based algorithms can be very efficient in complex and high dimensional
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space. Although they are not complete, they have the property of the probabilistic
completeness in the sense that the probability that they find a solution, if one
exists, approaches one as the number of samples goes to infinity.

In this section, we introduce several sampling based algorithms which are based
on the proposed methods. Before discussing those algorithms, we first describe

the following common primitive procedures.

o Atree T = (V,€) or agraph G = (V, ) contains a set of vertices V and a

set of edges &.

e Sample(X) function returns an independent, uniformly distributed sample

from X.

e Nearest_Neighbor(T,z) or Nearest_Neighbor(G, z) returns a vertex in V

which is closest to x in terms of the Euclidean distance.

e Steer(x,y) procedure returns a configuration z in a ball centered around x
closest to y, i.e. argmin, [|z—y| s.t. [[x—z|| < p, where p > 0 is a predefined

steering parameter.
e Parent(T,z) returns a unique vertex x’ € V such that (2/,z) € £.

e Near(x,r) returns a set of all points in V that are within a ball of radius r

L centered at x.

e CollisionFree(x,y) checks whether the line connecting two points x and y

is placed in Xy ce.

One of the most representative sampling based path planning algorithm is

the rapidly-exploring random tree (RRT) [29] which explores a high dimensional

!The radius is defined as r < y(log(n)/ n)%, where 7 is a constant factor ensuring the opti-

mality of the path, n is the number of all nodes in V and d is the state dimension.
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configuration space using random sampling. An outline of RRT is shown in Al-
gorithm 1. Once a starting point and the goal region are defined, the algorithm
iteratively samples a random point ;4,4 over the configuration space and makes
an attempt to expand the search tree 7, which is initialized with the starting
point. The ,4,q is sampled from a uniform distribution over the space but we
can make the distribution biased towards the goal point for faster search of a
path to the goal. The tree T is extended by connecting from xjcq-, which is the
nearest point of the tree from x,.4,4, to @ new point x,., in the direction of z, 454,
provided that T,eq, can be found. x,e, is computed by applying a control input
u € U, where U is a set of possible controls, to the vehicle dynamics for a fixed
duration At. Once the tree 7 reaches the goal point, the path can be built by

searching the tree 7 recursively from the goal point to the starting point.

Algorithm 1 RRT
1: V< {xo},g — @,T(- (V,g)

2: while stopping_criterion is false do

30 Tyand < Sample(Xfree)

4: Zpearest < Nearest_Neighbor(T, Z,qnd)

5 Tpew Steer(Tnearests Trand)

6:  if CollisionFree(zpearest; Tnew) then

7: V VU {Znew}, € < EU{(Tnearest: Tnew) }
8  end if

9: end while

10: return 7

Although RRT is known as an efficient approach for complex path planning
problems, it focuses mainly on the feasibility of the path with less consideration

on the cost of the path. So it is not suitable for optimal path planning problem.
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In order to solve the limitation in the optimal point of view, the optimal rapidly
exploring random graph (RRG) and optimal RRT (RRT*) have been proposed

recently considering the importance of the quality of the path in [53].

RRG and RRT*, which are variants of RRT, are outlined in Algorithm 2 and 3,
respectively. They are similar to RRT in that they iteratively explore the configu-
ration space by incrementally increasing a graph or a tree towards x,4,q through
the connection from Z,cqrest tO Tpew. However, RRG performs the additional con-
nections to build a graph unlike RRT. Whenever ., is added to V, connections
between 2,0, and all vertices included in V which are returned from the function
Near(zpeyw,r) are added if each connection is valid. RRT* is a sub-graph of RRG
which prunes unnecessary edges contained in RRG which are not included in the
best path found to each node. In order to perform such procedures, two following
procedures are required. First, the parent of x,., is selected among all vertices
in X,eqr based on connections from Z,eqr tO Tnew. The selected parent gives the
least cost from the starting point to e, through itself. Once the parent is se-
lected, the rewiring procedure is performed. For all vertices in X,,eqr, if the cost
of the unique path from the starting point to x,cq,- is higher than the cost of the
path to Zpeqr through ey, then x,eq, is disconnected from its old parent and
Tnew 1S assigned as the new parent of .4 and connected to Tyeqr. By performing

the above two procedures, RRT* maintains a directed tree structure.

4.3 Cross entropy method

Cross entropy (CE) is an adaptive stochastic optimization method designed to
estimate the probability of rare events [36]. It has been also extended to solve

combinatorial optimization problems, such as the traveling salesman problem [89].
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Algorithm 2 RRG

1V {20}, 0,6« (V,E)

2: while stopping_criterion is false do

3:

4:

10:

11:

12:

13:

14:

15:

16:

17:

Trand + Sample(Xyec)
Tnearest < Nearest_Neighbor(G, ,qnq)
Tnew Steer(Tnearests Trand)
if CollisionFree(Zpeqrests Tnew) then
V<~ VU {Zpew}
Xnear < Near(G, Tpew)
for z,cqr € Xpear do
if CollisionFree(zpew, Tneqr) then
E — EU{(Tnew, Tnear)}
end if
if CollisionFree(zpear, Tnew) then
E — EU{(Tnear, Tnew)}
end if
end for

end if

18: end while

19: return G
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Algorithm 3 RRT*

LYV« {z},E« 0, T« (V,E)

2: while stopping_criterion is false do

3:

4:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

Trand < Sample(Xfyee)
Tnearest < Nearest_Neighbor(T, Z,qnd)
Tnew $—Steer(Tnearests Trand)
if CollisionFree(Zpeqrests Tnew) then
V+— VU {Zpew}
Xnear ¢ Near(T, Tnew)
Tmin = Tnearest, Cmin < COSt(Tnearest) + J (Line(Tnearests Tnew))
for Tnear € Xnear \ {Tnearest} do
' +Cost(near) + J (Line(Tpear, Tnew))
if ¢ < ¢ AND CollisionFree(zpeqr, Tnew) then
Tomin < Tnears Cmin < €
end if
end for
E — EU{(Tmin, Tnew)}
for zpear € Xnear \ {ZTmin} do
' + Cost(Znew) + J (Line(zpew, Tnear)
if ¢ < Cost(zpear) AND CollisionFree(zpew, Tnear) then
&« EU{(Tnew; Tnear) }
end if
end for

end if

24: end while

25: return T

63



Chapter 4. Preliminaries to Cost-Aware Path Planning

Consider the following optimization problem with a performance function S

géi)r(l S(x). (4.1)

Let v* be the minimum of (4.1). By defining a family of auxiliary probability
density functions (PDFs) {p(-;0),0 € O} on X, we can transform the determin-
istic problem into a stochastic problem. Then, (4.1) can be formulated as the

following estimation problem:

I(v) =P(S(X) <) =Ep[Ig(x)<l;

where X is a random vector with PDF p(+; ¢) for some ¢ € O,  is a real number,
and I is the indicator function. The expectation is taken with respect to the
distribution p. A simple (and crude) approach to estimate [ is to use the following

Monte Carlo method
= ZI{S )<

where X1, Xo, ..., X are samples drawn from p. However, for small ~, the prob-
ability [ will be very small and a large number of samples are required to estimate
[ accurately. A better approach to estimate [ using a smaller number of samples is
the importance sampling method. Suppose that ¢ is an other probability density
function such that if q(z) = 0, then I;g(x)<,3p(7) = 0. Then, [ can be rewritten

as

p(x) p(‘<)
= /1 =7 =EI —
l / {S(z)<~} q( )Q(x)dx gH{S(X)<v} q( X)’

where the expectation is taken with respect to ¢, which is known as the im-
portance sampling density. Hence, with N independent samples from ¢, we can

estimate [ using

1 N
l:ﬁz (s W(Xi),
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where W (X;) = p(X;)/q(X;) is known as the importance weight. If ¢ can provide
more samples for {S(X) < v}, then we can estimate [ more accurately than the
simple Monte Carlo method.

While the best choice ¢* for ¢ is the density which minimizes the variance of
the estimator I, it cannot be computed in practice. Cross entropy attempts to
find ¢ which is closest to ¢* by minimizing the Kullback-Leibler (KL) divergence
between two densities. Suppose that the target distribution is p(-;6*) from a
family of distributions, where 6* is the true parameter of the distribution p. The
cross entropy algorithm shown below is used to find the optimal parameters 6*

which minimizes the KL divergence between ¢* and p(+;0).

1. Tt generates X1, ---, Xy from p(X;ék_l), where 0j_; = ¢ when k = 1.

Compute the cost S(X;) and list them in the order i.e., S(1) <--- < S(N).

2. Let 4, be o-th quantile of S(X), i.e., 4 = S[,n7, where g is a small number

between 1072 and 10~L.

3. Compute the parameter 0y, using the following equation

N
1
0, = argemlnﬁZI{S(@S%}W(XHCZ),Hk—l)
i=1
x Inp(X;;0),
where W (x; ¢,0) = p(z, ¢)/p(z,0).

4. Increment k and iterate until p(X; ék) converges to a delta function.

4.3.1 Cross entropy based path planning

In [37], the cross entropy method is applied to path planning, where the optimal
control law with minimum time is sought for. Algorithm 4 shows the cross en-

tropy path planning algorithm which finds a trajectory for a robot from the start
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position Zstqr+ to the end position xe,q. It samples a trajectory X from distribu-
tion p(-;v), where v is a set of controls. The algorithm first generates N random
trajectories Xi,..., Xy from p(X;v;) considering constraints such as obstacles
and vehicle dynamics over the configuration space. If ¢ > 0 is a small number,
the algorithm selects N elite trajectory samples among all trajectory samples

that have less cost based on the cost function H, which is defined as:

T
H(X) = /0 Ca(t))dt

where C' = 1+ ||z — Teng||? With a positive constant 3 and T is the termination
time of the trajectory [37]. Then, it updates the parameter v; (i.e., a set of pairs
of control input and its duration) using the elite set. The algorithm iterates until

the sampling distribution p(X;v;) converges to a delta distribution.

Algorithm 4 Cross Entropy Path Planning

Require: 1. Start position zs: -+ and end position Zeyg
2. Number of trajectory samples N

3. Coefficients ¢ and
Ensure: Shortest time path from z gt t0 Zepg

1: i=0.

2: Draw N samples X1, ..., Xy from p(X;wv;), where p(X;v;) is a uniform dis-
tribution when ¢ = 0.

3: Select oV trajectory samples with lower costs among all trajectory samples
to the cost function H.

4: Update the parameter v; using the elite set.

5.1 =14+ 1.

6: Repeat steps 2-5 until p(X;v;) converges to a delta function.
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Chapter 5

Fast Cost-Aware Path
Planning using Stochastic

Optimization

This chapter presents an efficient algorithm for solving the optimal motion plan-
ning problem in a complex configuration space which minimizes the accumulated
cost of the path. The proposed algorithm can be applied to mobile sensor net-
works by considering the environmental field. In this dissertation, the complex
configuration space is represented by the costmap of the field which is computed
based on the environmental parameter using a Gaussian process. The Gaussian
process (or Kriging in geostatistics) is a nonparametric regression method which
has been successfully applied to estimate and predict complex physical phenom-
ena [90].

The proposed method improves upon RRT* by introducing nonmyopic exten-
sions using cross entropy. As explained in section 4.2, the RRT path planning

algorithm, as well as RRT*, iteratively samples a random point x,,q over the
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configuration space and makes an attempt to expand a search tree 7, which
is initialized with a starting point. The tree T is extended by connecting from
Tnearest; Which is the nearest point of the tree from z,qy,q, to a new point T,y
in the direction of x,4,q. When RRT* is applied to a complex environment for
path planning, it incrementally extends its tree from local search. So it requires a
large number of samples to find an optimal solution and the problem gets worse
for complex terrains or higher dimensional problems. We address this problem by
constructing two RRT trees: a standard RRT* tree 7 and an extended tree 7.
T is used to determine the xpeqrest Of any x,.qnq for better exploration. 7., which
includes T, contains additional longer extensions for nonmyopic search over paths
with less cost. When a new random state x,4,q is chosen, the proposed algorithm
searches for a path with the minimum cost from Z,eqrest € T 10 Zpgng using CE.
The path with the minimum cost is inserted to 7. and Z,e, is selected from the
path. The node x,¢y is also inserted to 7 and extra nodes in 7T, are added to 7T if
they allow a low-cost path to x,e,. By utilizing two separate trees, we can ensure
unbiased exploration over the space using 7 and, at the same time, improves the
efficiency of search using nonmyopic extensions in 7.

We show that the proposed cost-aware path planning algorithm consistently
finds low-cost paths against RRT [29] and RRT* [53] from a set of extensive
simulations including physics-based simulations using the dynamic model of a
two-wheel robot, Pioneer 3DX, on complex terrains and experiments using a

humanoid robot, Nao, in a high dimensional configuration space.

5.1 Problem formulation

Let Q denote the operation region, in which a robot performs its tasks. Let

X C R" be the state space of a robot, where X = Xy, U Xpps and the state
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x € X includes the position ¢ € Q of a robot. X5 represents the space where
obstacles are placed or the robot may be in collision due to actuator bounds and
Xfree = X\ Apps is a free space. We assume that the state of the robot z(t) € X

is determined by
L(t) = fa(t),u(t)), (5.1)

where u(t) € U C RP is the control input applied at time t and f is a class C™
or smooth function.

Let xg € X be the initial state of the robot and x40, C X be the goal region.
Let m,(t) be the trajectory solution to the differential equation (5.1) for given
u(t) from t =0 to t =T € RT, where T is the termination time. The trajectory
7y (t) can be parameterized by a series of states and control inputs (z(t), u(t))
and it connects the initial state and the goal region such that z(0) = zo and
2(T) € T40q.- We assume in this dissertation that the trajectory is deterministic
given the environment and control inputs. Then we want m,(t) € Xtpe. for all
times. Given the initial state zo € A and the goal region g0, C A&, such that
x(0) = xo and z(T) € Zgoa, and a cost function J, the minimum cost path

planning problem can be expressed as:

arg min,, y).o<¢<7 j(”u(t))
subject to m,(t) € Xfpee for all t € [0, 7]

and 7,(T) € Tgoa1- (5.2)

The classical path planning problem defines a cost function which only consid-
ers the length of a path, so the optimal solution is focused on how fast a robot
can reach the goal region. However, the cost function for the minimum cost path
planning problem is required to take into account the quality of a path while a

robot is moving along the trajectory. This means the cost function J can depend
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on a costmap C which depends on the position of a robot (i.e., C: @ — R) or an
energy function £ which depends on the state of a robot (i.e., E : X — R).

In this dissertation, we consider a cost-aware path planning problem, which is
to solve path planning problem while minimizing the cost along the path based

on the defined cost function.

5.2 Issues with sampling-based path planning for com-

plex terrains or high dimensional spaces

A sampling-based path planning algorithm, such as RRT and PRM, has some
charming properties. First of all, the probabilistic completeness can be guaran-
teed, meaning that the probability that the algorithm finds a solution increases
to one as the number of samples grows to infinity if a solution exists. Such algo-
rithms can also find a solution rapidly for a complex high dimensional space since
they incrementally grow a graph to randomly chosen point until they reach the
goal region. Moreover, the implementation of a sampling-based method is rela-
tively simple. But, both approaches are not suitable for the problem of cost-aware
path planning in a complex terrain or a high dimensional space since they focus
on finding a feasible path to the goal region, which is collision-free. A variant of
RRT, called RRT*, can be a candidate approach for finding a path appropriate
for the mission since it returns a minimum-cost path after an enough number
of iterations due to the asymptotic optimality of RRT*. However, finding the
minimum-cost path in a complex terrain or a high dimensional space can be con-
sidered as an extremely rare event as the dimension of the state space increases,

so it requires an extremely large number of samples to find a good solution.

We demonstrate this using a toy example with a valley shown in Figure 5.1.
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The goal region is located at a slightly lower altitude than the start position. We

™

assume five angular velocities, w € {—5,—7,0,7%, 5}, as a set of possible inputs
with a constant translational velocity at an interval of 5 seconds. The duration of
a trajectory is 60 seconds. The dynamic model and the energy function used in
this example are described in Section 5.5.2. From 5'2 randomly generated RRT
trajectories, 6,038 trajectories reach the goal region (¢rqnq) and they are shown
as black lines in Figure 5.1. The trajectory in magenta is the trajectory with
the minimum cost among 6,038 trajectories. For a comparison, a path found by
the tree extension step of the proposed algorithm (CAPP) is shown in white.
The required energy for the path from CAPP is 0.3972 J (joule) and the path
from RRT requires 6.9577 J, which is more than 17 times larger than a solution
found by CAPP. When RRT* extends an RRT tree, it selects X, by steering
towards x,.q,q Without considering the cost of the path to &, 4nq S0 it extends the
tree based on a simple local search. Therefore, RRT* requires an extremely large
number of samples to find the minimum cost path. The running time of RRT*

for finding a trajectory with the same energy cost as CAPP was five times longer

than that of CAPP.

We consider another toy example, in which a humanoid robot lowers one arm
to place its hand at a specific position. Even if the motion is extremely easy,
there is a clear difference in energy consumption depending on how to schedule
the motion trajectory. Since robot arms has multiple joints and each joint rep-
resents a single state, the configuration space has high dimensions. We assume
five joints for one arm and each joint can move within its limited angle range.
When a robot takes an action, the consumed energy is determined according
to the torque on each joint and the change of each joint angle. More detailed

explanation about a humanoid robot and its energy function used in this work
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Figure 5.1: A simple terrain with a valley. Different colors represent different
elevations (see the colorbar). The start position and goal region are marked by
red and yellow squares, respectively. Random trajectories from RRT are shown
in black. The magenta trajectory is the minimum cost path found by RRT and

the white trajectory is a path found by the proposed algorithm.

can be found in Section 3.4. Figure 5.1(a) and 5.1(b) show paths obtained from
RRT* and the proposed algorithm, respectively, with a deadline of 500 seconds.
The red thick lines shown in the snapshots represent the trajectory of an end
effector. Since the torque on a single joint of the arm is affected by other joints
of the arm, the consumed energy is highly dependent on the state of other joints.
That is, there exist certain configurations of the arm which minimize the torque.
Therefore, the robot should move while maintaining configurations with low en-
ergy consumption. The trajectory obtained from RRT* tends to go straight to
the goal region while moving multiple joints simultaneously. On the other hand,

the proposed algorithm finds a trajectory which moves each joint of the arm in a
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more energy-efficient manner. It first lowers the arm by moving the shoulder pitch
angle without changing the shoulder roll angle. When the pitch angle becomes
zero, i.e., the direction of the arm becomes orthogonal to the body, it moves the
shoulder roll joint since this configuration requires less torque on the shoulder roll
joint. After moving the shoulder roll joint, the pitch joint moves again to the goal
state. The robot following the trajectory obtained from RRT* consumes 420.86 J
while the proposed algorithm provides a trajectory requiring only 296.61 J. Since
RRT* requires dense sampling in order to find the optimal solution due to its my-
opic nature, it is computationally intractable in a high dimensional space. Hence,
as demonstrated in this example, for solving an energy-efficient path planning

problem in high dimensional spaces, we need an efficient nonmyopic approach.

5.3 Cost-Aware path planning (CAPP)

We now describe the proposed cost-aware path planning algorithm that generates
a trajectory to minimize the accumulated cost along its path. The key idea is to
sample from the configuration space and to grow a search tree (or RRT tree) by
extending the tree using stochastic optimization. Unlike existing sampling based
motion planning algorithms, in which the RRT tree is extended towards the ran-
dom point based on the distance only, the proposed algorithm finds a path towards
the random point with minimal cost in a nonmyopic manner. The proposed al-
gorithm is based on RRT*, which guarantees the probabilistic completeness and
the asymptotic optimality, and cross entropy to find cost-efficient controls from a
parameterized continuous input space. Thus, the proposed algorithm is referred
as cost-aware RRT* (CARRT™) in this dissertation.

The overall structure of CARRT* is given in Algorithm 5. The primitive proce-
dures described in 4.2 are shared by CARRT*. Unlike RRT*, a specifically tailored
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extension procedure is added to CARRT*. The algorithm constructs two RRT
trees: a standard RRT tree 7 := (V,€) and an extended tree 7¢ := (Ve, &). The
standard tree T is used to determine the nearest point to a random point Z,qyqg
(line 5) for better exploration. The extended tree T¢ includes T, such that V C )V,
and £ C &.. T, contains additional branches with, which are not present in T,
and CARRT* uses 7. for finding low-cost long paths. The function CE_Extend

described below is used for growing 7.

When performing an extension, if the distance between T,eqrest and Typgpg is
larger than a threshold n > 0, i.e. || Zpearest — Trandl| > 1, CE_Extend function
finds a cost-aware path P* from Zjeqrest towards x,qnq using CE path planning
(line 7), where n > p. A set of elite states, Xcpg, is extracted from P* based on
the extension unit length p (line 8). Note that if we add all points in X¢g to T,
the tree will be biased towards 4,4, resulting poor exploration over the state
space. This is the reason why CARRT* constructs two separate trees to tradeoff
exploration and exploitation. The first point x.., of X¢g is used to plan both
trees as Tpney in function Plan_DoubleT'rees (lines 9-10). All other points in X¢g
are inserted only to 7. using Plan_SingleTree with rewiring (lines 11-13). When
the distance between Tjeqrest and x,qpq is smaller than 7, the standard steering
function of RRT* is applied (line 15). Since CE_Extend is not effective when

Tnear 18 close to T,qnq, the parameter 7 is introduced.

The function Plan_DoubleTrees, detailed in Algorithm 6, updates 7 and 7.
using the newly selected xpey and it is illustrated in Figure 5.3. Solid circles
and thick lines represent vertices and edges of T, respectively. Hollow circles and
dash lines represent vertices and edges of 7., respectively. In line 2 of Algorithm 6,
nodes in 7¢, except children of x,,¢,,, which are close to ;¢ are returned as X,eqr

log(n)

1
using Near (Figure 5.3(b)). Xyeqr are within a ball of radius r = ygrr7« (7) d

n
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Algorithm 5 Cost-Aware RRT*

1: YV« {xo},g — @,T<— (VMS)
2: V, {:L’o},ge — @,7; — (Ve7g€)

3: while stopping_criterion is false do

4:

5:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

Trand < Sample(Xfrec)
Tnearest < Nearest_Neighbor(T, Zqnq)
if ||¥nearests Trandll > 1 then
P* < CE_Extend(Znearest, Trand)
Xcog + Fragment(P*, p)
Tnpew < Tee, € XCE
[T, Te] < Plan_DoubleTrees(T, To, Tnearest, Tnew)
for {zcc, ti=2,... n € Xcg do
Te <Plan_SingleTree(Te, Tee; 1, Tee;)
end for
else
Tnew Steer(Tnearests Trand)
if CollisionFree(zpearest; Tnew) then
[T, Te] < Plan_DoubleTrees(T, Te, Tnearests Tnew)
end if
end if

20: end while

21: return 7,7,
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centered at ey, as explained in [53], where n is the number of vertices in 7. In
line 3, the best parent node X, Of Typew is found based on the cost to xey via
Tmin from Choose_Parent (Figure 5.3(c)). Here, Cost(z) calculates the cost of
the minimum-cost path from xzg to x. If ,,;, is not included in T, Update_Tree
function (Algorithm 9) is called to insert all ancestor nodes of z,;, from T¢ to T
(Figure 5.3(d)). By including nodes in 7. through Update Tree, CARRT* gains
more chances for extending the tree in a nonmyopic manner. Lines 10-23 are
for rewiring. If the rewiring condition (line 11) is satisfied for x,eqr, the parent
of Tpear 1s shifted to Tpeyw like RRT*. However, CARRT* checks whether ycqr
is included in T for Xpew. If it is not in 7, the node Xpeqr and a new edge
(Tnews Tnear) are added to T (lines 13-14). On the other hand, if Zyeqr € T, the
rewiring procedure is the same as RRT* (lines 16-18). For x,ew, Te is updated
by deleting an edge from the parent of Zpeqr t0 Tpeqr (line 20) and including an
edge (Tnews Tnear) (line 21). This rewiring case is shown in Figure 5.3(f). The
stopping criterion of CARRT* can be the number of iterations after reaching the
goal region 444/, the maximum number of iterations, or a time deadline.

A critical function of CARRT*, CE_Extend, is described below.

5.3.1 CE_Extend

The objective of CE_Extend is to help extending a tree from x,eqrest With a low-
cost path to Zyqng. A low-cost path is found using cross entropy path planning
described in Section 4.3.1. We propose two different approaches to generate a

path to x,4nq and they are:

1. Motion primitives: {(u1,t1), -, (um,tm)}, where control input u; € U is

applied over time duration of ¢; for j € {1,...,m}.
2. Waypoint primitives: {(z1, - ,2Zm)}, where x; € Xfe. for j € {1,...,m}.
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Algorithm 6 Plan_DoubleTrees(7T, Te, Tnearests Tnew)

1:

2:

3:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

V< VU{Znew}, Ve + Ve U{Tpnew}
Xnear < Near(Te, Tnew)
Tmin —Choose_Parent( X eqr, Tnearests Tnew)
if Tyin ¢ V then
T «Update_Tree(T, Te, Tmin)
else
E + EU{(Tmin, Tnew)}
end if
Ee = Ec U{(Tmin; Tnew)}
for Tpear € Xnear \ {Tmin} do
'+ Cost(Tnew) + J (Line(Zpew, Tnear)
if ¢ < Cost(xpeqr) AND CollisionFree(zpew, Tnear) then
if Tpear ¢ V then
V< VU {Znear}
£ — EU{(Tnew, Tnear) }
else
Tparent < Parent(T, Zpear)
E +— E\ {(zparent; Tnear)}
&+ EU{(Tnew, Tnear)}
end if
Ee + &\ {(Parent(7e, Tnear ), Tnear) }
Ee < & U{(Tnew, Tnear)}
end if
end for

return 7,7,
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Algorithm 7 Plan_SingleTree(7e, Tnearests Tnew)

1:

2:

3:

@

®

10:

11:

12:

Ve < Ve U{ZTnew}
Xnear < Near(Te, Tnew)
Tmin —Choose_Parent(Xyear, Tnearests Tnew)
Ee +— Ec U{(Tmin, Tnew)}
for Tpear € Xnear \ {Tmin} do
¢ «Cost(Znew) + J (Line(Tnew, Tnear)
if ¢ < Cost(xpeqr) AND CollisionFree(zpew, Tneqr) then
Ee < &\ {(Parent(Te, Tnear), Tnear) }
Ee < & U{(Tnew; Tnear)}
end if
end for

return 7,

Algorithm 8 Choose Parent(X,eqr, Tnearests Tnew)

1:

2:

3:

Tmin < Tnearest
Cmin < COSt(xnearest) + j(Line(xnearesh xnew))
for Tnear € Xnear \ {xnearest} do
d «Cost(znear) + J (Line(Tnear, Tnew))
if ¢ < ¢pin AND CollisionFree(Zpear, Tnew) then
Tomin < Tnear, Cmin < C
end if
end for

return z,,;,
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Figure 5.3: An illustration of Algorithm 6. The tree T is represented by solid
circles and thick lines while the extended tree 7. is represented by solid circles
and thick lines with additional branches represented by hollow circles and dash
lines. () Tnearest 18 selected from T for ,qnd. (b) Xnear of Zpew are chosen from Te.
(¢) Among X,cqr, the node with the minimum cost is selected as p,. (d) Once
Tmin 18 determined from 7, the ancestor nodes of x,,;, are added to T through
Update_Tree. (e,f) For &peqr, the rewiring procedure is performed by deleting the
edge from the parent of Zpeqr t0 Tpeqr and inserting an edge (Tpew, Tnear) 10 Te

if Tpeqr 1s not included in T .
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Algorithm 9 Update_Tree(T, Te, Tmin)

1. 2’ Tmin

2: while 2’ ¢ V do

3. a” + Parent(7,, )

4 V<« VUul{rhE« Eu{a" )}
5. 2l a2’

6: end while

7. return T

The motion or the waypoint primitives are sampled from p(-;v), where p(-;v) =
N (|, %) and v = (i, X). The Gaussian distribution is used for the ease of com-
putation but other distribution from a natural exponential family can be eas-
ily applied [91]. The basic idea behind cross entropy is to optimize v using the
Kullback-Leibler divergence, such that the resulting p(-;v) is biased towards the
optimal parameter distribution. In our case, we want p(-;v) to become a delta

function and represent a minimum cost path.

Motion Primitives

The initial value vy = (uo, Xo) of v is set by selecting pp and 3¢ such that the
motion primitive causes the shortest path from z,eq; t0 Treng and each control is
applied at an equal time interval. At the k-th iteration, we generate N, trajectory
samples Py, -+ , Py, using motion primitives sampled from p(-;vg_1). In order to
find a path to reach a region near x,4,q while having the minimal accumulated
cost as stated in the path planning problem (5.2), we define two parameters n, > 0
and mp > 0. We first select at most 7, Ny trajectories whose terminal positions are

close to the goal region and then select at most n,V; elite trajectories with the

m

lowest costs. After these two layers of filtering, we update v, = {,u;-np , E;.np i
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from the selected elite samples 7 = {m}?i]ft, where

1 np Nt s Nt T
Wit = o [ R tlﬂ']
mNe L= S (5.3)
1 Nt T .
T T
xi = Nt Z ([ugg, ti]" — Ng'np) (R “gnp) ’
=1

where (u;,t;;) is the j-th motion primitive parameterized by the I-th elite sample.
In order to guarantee that the update procedure always reduces the cost, we
remember the best sample in the previous step and reuse the sample in the
current update procedure if it has a lower cost than current elite samples. With
these two layers of filtering, we can find a solution to (5.2) which always arrives at
the goal region. The maximum number of iterations in the CE_FExtend function
is fixed to Njter in our algorithm. After iterations, the minimum cost path P*
from ZTyneqr 10 Trang is selected. In our implementation, a discretized version of

the optimal path planning problem is used as described in [64].

Waypoint primitives

The initial value vy of v is set such that a direct path from T,eqrest 10 Trgng
is equally covered by each Gaussian component of vy. At the k-th iteration, we
sample N; waypoints {X;}Y, from p(-;vp_1), where X; = {zi;}7L,. Assuming
that there exists the parameterization function g(-) which gives the trajectory
P(t) and control input u(t) given two waypoints x1 and w9, i.e., ((P(t),u(t)) =
g(x1,x2)), then for each X;, we can construct a path P; from Zneqr t0 Zyang by
connecting Tpeqr t0 Ti1, Tij 10 Ti(j11) for all j, and x;,, t0 T;qnq using the function
g. In order to connect between two waypoints, we used Dubins’ curves [92] as a
solution of the boundary condition problem. Dubins’ curve can be characterized
by six curves such as {LSL, RSR, LSR, RSL, RLR, LRL} and each curve consists

of three path segments such as turning right (R), turning left (L), and straight
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line(S). For six curves, we derived the equations which represents the length of
each path. Each solution for six length equations is formulated in Appendix E.
For the case of complex space with multiple obstacles, it is difficult to set the
initial value vg since the connection from z;; to z;;;1) cannot be found easily
due to obstacles. In such a case, a path obtained from RRT is used as vg. For
each P;, we compute the accumulated cost along the path. Unlike the path using
motion primitives, all paths can reach ,q,q, SO we use a single-layer filtering

without considering the terminal cost. We select n,N; elite samples with the

lowest accumulated costs. From the selected elite samples X, = {Xi}?ijft, we
update vy = {p;", X7 }70,, where
1 Nt
wp
= x
H 6Nt ; b
B (5.4)
1 Nt
%= o 2 — ) g = g )"

5.4 Analysis of CAPP

In this section, the properties of the proposed algorithm are evaluated. We first
describe and prove the probabilistic completeness of CARRT*. Then we analyze
the optimality of CARRT*.

5.4.1 Probabilistic Completeness

As shown in [29], RRT is probabilistically complete and has an exponentially fast
convergence rate for the probability of finding a solution if one exists as more
vertices are added to the RRT tree. Furthermore, it is shown that its variants such
as RRT* and the rapidly-exploring random graph (RRG) are also probabilistically

complete [53]. Based on the analysis of those works, we extend the proof of the
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probabilistic completeness of CARRT™. For the proof, we first need the following

terms from [93].

Definition 1. (Local controllability). A robot is defined to be local controllable if
and only if, Vo € Xfree, the set of configurations that the robot can reach within

a finite time contains a ball centred at x.

In this work, we assume that a robot with holonomic dynamics is locally con-
trollable as explained in the Definition 1. We denote the closed ball of radius e

centered at configuration x by B¢(x) and the set of all such balls by B..

Definition 2. (e-reachable set). Let € > 0 and x € X be given. The e-reachable
set of x, denoted by Re(x), is defined by

Re(x) = {2’ € Bc(x)| A path w from x to z’ is entirely

contained in B(x)}.

Definition 3. (e-free feasible path). A path 7 is said to be e-free feasible, if the
minimal distance between w and the obstacle region is €, i.e., for all x € m,

Be(ﬂf) C Xfree'

In terms of the notation used in this dissertation, the notion of probabilistic

completeness can be stated as follows.

Definition 4. (Probabilistic completeness). Suppose that there exists an e-free
feasible path from the starting point to the goal region. Then a sampling based
motion planning algorithm is probabilistically complete if the probability that the
algorithm finds an e-free feasible path from the starting point to the goal region

approaches one as the number of samples goes to infinity.
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Unlike RRT and its variants, such as RRG and RRT*, which select a discrete
input from a finite set of inputs, CARRT* selects a random input from a con-
tinuous input space for tree extension. Therefore, we first show that even if RRT
selects an input from a continuous input space, it has the probabilistic complete-
ness property and then show that the proposed algorithm is probabilistically

complete.

Theorem 1. An RRT, which selects an input from a bounded continuous input

set for tree extension, is probabilistically complete.

Proof. See Appendix A. O

Theorem 2. CARRT* is probabilistically complete.

Proof. See Appendix B. O

5.4.2 Asymptotic optimality

In this section, we show that a path found by CARRT* converges to the optimal
solution with probability one. Depending on the distance between eqrest and
Zrand, CARRT* adopts two extension procedures: one is a long extension using
CFE_Extend when ||Zpearest — Trand|| > 1 and the other is a standard extension
based on Steer. Considering the asymptotic optimality of RRT* [53], we prove
the asymptotic optimality of CARRT* by showing the asymptotic optimality for
the case when a tree is extended using long extensions. Let ¢* = ¢(7*) be the cost
of an optimal path, and ¢, be the cost of the minimum-cost solution returned by
CARRT™* at the end of the n-th iteration. We denotes (y the volume of a unit

ball in the d-dimensional space.

(%)5, then CARRT* algorithm is

asymptotically optimal, that is, P({lim,_~ ¢, = ¢*}) = 1.

=

Theorem 3. If yrrr= > (2(1 + é))
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Proof. See Appendix C. O

5.5 Simulation and experimental results

In this section, we discuss results obtained from the proposed algorithm in sim-

ulation and experiments. The following planning problems are considered:

(P1) To find a trajectory which minimizes the accumulated position-dependent

cost when a robot traverses over a field with environmental parameters;

(P2) To find a trajectory which minimizes the consumed energy when a robot

traverses over a complex terrain; and
(P3) Motion planning for humanoid robots in a high dimensional space.

(P1) is an instance of PDPP while (P2) and (P3) are instances of SDPP. In
order to evaluate the performance of the proposed algorithm, we compared the
proposed method against the standard RRT [29], RRT* [53]!, and cross entropy
path planning algorithms, SCERRT* and TCERRT*, from [79]. SCERRT* and
TCERRT™* are RRT* based path planning algorithms using cross entropy. While
SCERRT* samples a random point from the state space, TCERRT* samples
from a parameterized trajectory space [79]. Cross entropy based path planning
algorithms including the proposed algorithm require several user defined param-
eters and they are set as follows: Ny = 100, Ny, = 50,17, = 0.2, = 0.1, m = 8.
Additional parameters for SCERRT* and TCERRT* are set to the same values
used in [79]. The proposed method has two versions depending on the method

used to generate a path in CE_Extend and they will be referred as CARRT*(M)

While there are a number of extensions to RRT*, including [80, 81, 82, 84, 85, 94], Some
of them are focused on minimizing the path length. In addition, there is no publicly available

implementation of their work for fair comparison, hence, we only compared to RRT and RRT*.
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and CARRT*(W). CARRT*(M) uses motion primities (see Section 5.3.1) while
CARRT*(W) uses waypoint primitives (see Section 5.3.1). For (P1) and (P3),
only CARRT*(W) is applied since a simple dynamics model is assumed in both
problems.

All simulations were run on a desktop with a 3.4 GHz Intel Core i7 processor
with 16 GB of memory. The proposed method was implemented both in MATLAB
and C/C++2. For problems (P1) and (P2), all algorithms were implemented in
MATLAB. For (P3), the C/C++ implementation of the proposed method was

compared to the C implementation of RRT* provided by the authors of [53]3.

5.5.1 (P1) Cost-Aware Navigation in 2D

Consider a surveillance region Q = [—15, 15]2 in which a robot operates. Q con-
sists of a free space, Qfyec, and a collection of obstacles, Qus. A simple linear

motion model is assumed for the robot dynamics.

Position Dependent Cost Function

As a robot moves from one location to another, the robot is penalized by an
instantaneous cost at its current location. The cost of the entire region Q can
be represented as a costmap C : @ — RT. Given a costmap, we can formulate a

position-dependent cost function Jpppp as follows:

JpDPP (M(ﬂ) = (; /OTC(Pu(t))dt+ 6/0T dt) : (5.5)

where Py, (t) C m,(t) is a path considering only the positions of m,(t), such that

Pu(t) € Q. The line integral of C along the path of a robot is the total accumulated

2The algorithm will be available at http://cpslab.snu.ac.kr/software
3http://sertac.scripts.mit.edu/web/Software.
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cost until the robot arrives at the goal region. The last term with ¢ > 0 is intro-
duced to favor a shorter trajectory for trajectories with the same accumulated

cost.

Costmap

We assume that a costmap is defined over Q, representing environmental param-
eters. Since we cannot measure the environmental parameter at every location,
we use a nonparametric regression method, namely Gaussian Process Regression
(GPR), to predict the environmental parameter at a site where no measurement
is made. GPR has been widely used as a nonparametric regression technique
for modeling complex physical phenomena, including nonstationary geostatistical
data analysis [95], nonlinear regression [96], wireless signal strength estimation
[97], indoor temperature field modeling [98], and terrain mapping [99]. Com-
pared to parametric regression methods, nonparametric regression methods are
more expressive and yield better generalizability. Hence, methods such as Gaus-
sian processes are well suited to model complex environments. We assume that
the environmental parameter of interest, which defines the costmap C, follows
a Gaussian process. Suppose we have made n samples from the surveillance re-
gion Q. Let q = {q(l),q(2)7 . ,q(”)} be the set of locations at which samples
are taken and y,4y® . 4™ be the measurements. If C(¢) is a GP, it can

be fully described by its mean function p(g) = E(C(¢)) and covariance function

K(q,q') =E((C(q) — u(9)(C(q) — m(d))), i-e.,
C(q) ~ GP(u(q), K(q,q")). (5.6)

Let Y = [yMy®@ ... y]T Then, for any ¢. € Q, the expected value of the cost

function at ¢, is

Cla) = K (K +a3,1) 7Y, (5.7)
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where K = [Kjj] is the kernel matrix such that K;; = k(X;, X;), K. =
[k(xlvx*) -"k(:En,x*)]T [90]

In this dissertation, we used the squared exponential as a kernel function,

n
k(X,X') = ofexp (—2;2 mZ::l(Xm - X;n)> , (5.8)
where oy and o0; are hyperparameters of the kernel.

The resulting costmap is defined over the continuous space and this is different
from previous approaches where a cost function is defined over a discretized space.
If cost values are known at discrete sites, the same method can be applied to
smooth the costmap. Hence, by applying GPR, we obtain a costmap of infinite
resolution. Note that the appropriate parameters for the kernel function and the
variance of the observation model have to be learned from the data samples before

the costmap is applied.

Evaluation

We generated four scenarios with different costmaps from a Gaussian process
given in (5.6) with kernel function (5.8), where 0120 = 1.0 and 07 = 5.0. Scenarios
are indexed from S7 to S;. We used the Gaussian process MATLAB toolbox
[90] for modeling the costmap. To consider obstacles, we added several obstacles
placed at the same locations in all scenarios. The starting position x¢ and the goal
region x40, are randomly chosen for each scenario. Two examples of scenarios
used in simulation are shown in Figure 5.4. The left figures in Figure 5.4(a) are
scenarios without obstacles and the right figures are with obstacles. The costmap
is shown as contours with different colors. The high cost region is represented in
white and the low cost region is represented in black. The white squares represent
xo and x40, and they are marked by letter S and G, respectively. The obstacle

region is represented by red rectangles.
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For all scenarios, we performed a total of 10 simulations of each algorithm using
different pre-specified random seeds and set the time deadline to terminate the
algorithm after 3000 seconds. We first compared different algorithms for scenarios
without obstacles. The left figures in Figure 5.4 show costmaps and the trajectory
with the minimum cost found by the proposed algorithm over the costmap. Fig-
ure 5.5 shows the average trajectory cost found by each algorithm as a function
of the running time for 10 trials for each scnerio. Since the cost of RRT was too
high, so it is not included in Figure 5.5. The proposed algorithm shows excellent

performance in all cases compared to other algorithms.

We also performed the same simulation but with obstacles. The trajectory with
the minimum cost found by the proposed algorithm is shown in the right figures
of Figure 5.4. The average trajectory costs from different algorithms are shown in
Figure 5.6. For all cases, the proposed algorithm converges to the optimal solution
faster than other algorithms. For all simulations, the proposed algorithm finds a
trajectory with less cost in the beginning compared to other algorithms, thanks
to longer extensions for nonmyopic search used in the proposed method. Note
that the difference between CARRT* and RRT* is not large in all simulations

since relatively simpler cases are considered.

5.5.2 (P2) Complex Terrain Navigation

In order to model a terrain with different elevations, we make a digital terrain
model (DTM) or a height map using pairs of location and elevation values. We

can display the terrain using the Gazebo simulator [100] based on the DTM.
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PDPP : 81 PDPP with obstacles: S1

PDPP:S,

Figure 5.4: Examples of scenarios used in simulation and the optimal trajectory
with the minimum cost found by the proposed algorithm. The color over the field
represent the costmap. The darker color represents low cost and the bright color

represents high cost. Red rectangles are obstacles.
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Figure 5.5: The average trajectory cost as a function of deadlines for each scenario

(without obstacles). The average cost of each algorithm is computed from 10

independent trials. Legend: RRT* (red), SCERRT* (green), TCERRT* (blue),

and CARRT* (magenta).
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Dynamic Model

For this problem, we use a dynamical model of a two-wheeled robot (Dubins’
car). However, the proposed method can be applied to other dynamic models
with suitable energy functions. Let (¢, gy) be the position of a robot and 6 be
its heading. Suppose v(t) is the translational velocity and wu(t) is the angular

velocity, then the whole dynamics is as follows:

Go(t) = v(t) cos(B(1), gy(t) = v(t)sin(6(t)), O(t) = u(t).

In simulation, v is fixed at a constant value of 1m/s. A discrete-time version of
the above dynamical model is used in simulation where the sampling period is

set to 0.1s.

State Dependent Cost Function

Unlike the position dependent cost function used in (P1), we consider a state
dependent cost function, Jsppp, which depends on the energy function £ : X —
R*. In order to measure the energy consumption by a robot along its path, we
use the mechanical work (MW) criterion [43]. The MW criterion evaluates the
quality of a path by regarding a nonnegative increment as a penalized cost. In
other words, it is assumed that there is no cost loss for the negative slope of
the time derivative of the energy function [43]. Using MW, we can define a cost

function as follows:

Tsppp(ma(t)) = /OTI{M>O}Wdt+e/OTdt : (5.9)

where Iy, is the indicator function. Hence, the cost is penalized when the time

derivative of the energy function has a positive slope along the path of a robot
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and the cost function J captures the penalized cost from t = 0 to t = T. The
last term with e plays the same role as the last term in (5.5).

Consider a costmap represents terrain elevation. Then accumulated cost de-
pends on the consumed energy along the path. Figure 5.7 shows a simple terrain
with different elevations and paths found by PDPP and SDPP. There is a valley
between the start position (red square) and the goal region (yellow square). The
goal region is located at a slightly higher altitude than the start position. Since
the cost function in PDPP considers the instantaneous cost at each location, it
passes through the lowest altitude region. On the other hand, SDPP avoids the
valley As shown in Figure 5.7(b) and 5.7(c), PDPP spends no energy until time ¢,
but spends more energy than SDPP to reach the goal region in terms of energy
consumption. While the path is longer, SDPP produces a path which requires
lower energy than PDPP. This example illustrates that when the energy con-
sumption has to be minimized, the algorithm must be able to avoid local valleys

and hills in the terrain.

Energy Function

Since we aim to minimize the energy consumption of a robot traversing a complex
terrain, we can use the energy function £ : X — R along the trajectory of
the robot. Given the energy function E, the total energy consumption can be
computed by integrating OE /0t along the path of the robot as shown in (5.9).

The energy at state x can be defined as follows:
E(z) = K(x) + P(x), (5.10)

where K is the kinetic energy and P is the potential energy. Since we assume the
translational velocity is constant, we ignored the kinetic energy in this disserta-

tion. For the discussion below, the argument x is omitted.
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Figure 5.7: (a) A simple scenario with trajectories found by PDPP (red) and
SDPP black). The start position and goal region are marked by red and yellow
squares, respectively. Different colors represent different elevations.(b) The alti-
tude of a robot as a function of time. (¢) The cumulative energy consumption as

a function of time.

The potential energy P can be defined as:
P=P,+ P;+ Py, (5.11)

where P, = mygh is the potential energy due to gravity, Py = pm,g cos(¢)As is
the potential energy for friction, and P, = % p fSaCd’UQAS is the potential energy
for the aerodynamic force. Here, m,, is the mass of the vehicle, h is the height, g
is the gravitational acceleration constant, ¢ is the heading angle with respect to
the ground plane, p is the coefficient of friction, As is the moving distance at
velocity v, Cy is the drag coefficient, py represents the density of the fluid, and

S, represents the front area of the vehicle.

Evaluation

The cost function (5.9) based on the energy function defined in the previous

section is applied to all algorithms. All parameters used in this simulation study
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Figure 5.8: The average trajectory cost as a function of times for each scenario.
The average cost of each algorithm is computed from 10 independent trials. Leg-
end: RRT* (red), SCERRT* (green), TCERRT* (blue), CARRT*(M) (magenta)
and CARRT*(W) (black).

are set based on a Pioneer 3DX robot as follows: m, = 9kg, uy = 0.001, py =
1.22N¢?>m™*, S, = 0.087m?, Cy = 0.05. We assume that there is no obstacle in

the terrain but it can be easily introduced.

We generated three simple scenarios to study behaviors of different algorithms.
The first and second scenario has a valley and a hill, respectively, between xg
and T goq. The third scenario has a few valleys and hills. Each algorithm is run
for 10 times to compute the average values. We extended the termination time
to 10,000, compared to (P1), since it took more time to find the optimal path
for these cases. Average energy consumptions for trajectories found by different
algorithms are shown as a function of the running time in Figure 5.8. The optimal
trajectory tends to go around local minimum or maximum regions, so it avoids
the valley and hill. The average minimum energy consumed by paths generated

by each algorithm is shown as a function of times in Figure 5.8.

We then tested algorithms with four complex scenarios. Each scenario has mul-

tiple valleys and hills, unlike the simple scenarios. We randomly set x¢ and 404
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Figure 5.9: The average trajectory cost as a function of times for each scenario.
The average cost of each algorithm is computed from 10 independent trials. Leg-
end: RRT* (red), SCERRT* (green), TCERRT* (blue), CARRT*(M) (magenta)
and CARRT*(W) (black).

for all scenarios like in P1. Figure 5.9 shows the average minimum energy con-
sumption as a function of times for each algorithm. Once again, for all scenarios,
the proposed algorithm shows the best result. Likewise, the proposed algorithm
finds a trajectory with less cost at the beginning compared to other algorithms.
Furthermore, the final cost of result from the proposed algorithm is much less

than other algorithms, since the state space is more complex than the case of P1.

In order to validate trajectories obtained from simulation, we ran realistic
physics-based simulations using the robot operation system (ROS) [101]. The
ROS simulator provides a plugin for a differential-drive robot, such as Pioneer
3DX. The path found by a path planning algorithm is used to guide a robot in
ROS and Gazebo is used to display how a robot moves in the terrain. Snapshots
from the simulation are shown in Figure 5.10. The arrows represent a path found
by an algorithm. As shown before, CARRT*(M) goes around the valley since it

is more energy-efficient to move around a local valley.
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Figure 5.10: A sequence of snapshots of a Pioneer 3DX robot following a given
trajectory for the proposed algorithm in a ROS+Gazebo simulator. The white

arrows represent points from energy-efficient paths found by CARRT*(M).

5.5.3 (P3) Humanoid Motion Planning
State Space

A humanoid robot Nao shown in Figure 5.11(a) is used for the experimental
evaluation of CARRT*. It has a total of 25 degrees of freedom. Since we are
interested in manipulating arms of a Nao and each arm has five joints, we limit
the state space of Nao to five dimensional space, i.e., X C R®. Figure 5.11(b)
shows five joints. The configuration space Xy, is defined within the joint angle
constraints specified in Figure 5.11(b) and X, contains not only obstacles but
also the torso and the head of a Nao. We also consider a ten-dimensional space

for controlling both arms of a Nao.

Energy function

In this section, we define the energy function suitable for the motion of a hu-
manoid robot. Unlike a ground vehicle, the consumed energy of a humanoid robot
can be obtained by computing the joint torques. The time derivative of energy

function OF /9t shown in (5.9) can be defined as follows:
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REIbowYaw (C S

Figure 5.11: (a) A Nao humanoid robot from Aldebaran. (b) Joints of the right

arm of Nao and joint angle constraints [102].

where f: X — R? represents the torque function described in [103]. Joint torque
values are obtained from the torque function using humanoid manipulator dy-
namics [103]. In this work, we ignore the velocity and acceleration of joints and
approximate the torque function by considering only joint angles. When we mea-
sured the current flow on each joint from a robot in real experiments, the value
was too noisy. So we moved arms slow enough along the given trajectory to obtain
accurate measurements. Hence, the assumption barely affects the estimation of

the consumed energy.

Evaluation

We compared the proposed algorithm against the standard RRT and RRT*. We
generated two scenarios for single-arm and dual-arm manipulations: one is to
position both hands to hold a box on a table by moving arms without colliding

with the table and the another is to hand over an object from the right hand to
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the left hand by avoiding obstacles. Both scenarios are shown in Figure 5.13 and
5.14. For a single arm case, the same tasks are applied to only one arm and the
other arm is kept in the goal region.

For all scenarios, we performed a total of 10 simulations of each algorithm
using different pre-specified random seeds and set the time deadline to terminate
the algorithm as 10,000 seconds for a single-arm case and 30,000 seconds for a
dual-arm case, respectively.

Figure 5.12 shows the average cost of 10 trials, along with one standard devi-
ation error bars. The cost of the standard RRT was too high to be included in
Figure 5.12. In Scenario 1, the average costs of RRT for single and dual arm cases
were 896.6 J and 1882.4 J, respectively, and the average costs were 553.6 J and
1144.8 J, respectively, in Scenario 2. Even if RRT* converges to the optimal so-
lution given enough time, the cost of its initial solution is relatively high and the
converge rate is extremely slow. This is because RRT* requires dense sampling
to improve the path by refining the tree. The proposed algorithm finds the near-
optimal solution fast with fewer samples since it extends the tree using waypoints
found by considering the quality of the path. Thus, the proposed algorithm can
find a good solution faster. For both scenarios, the proposed algorithm shows the

best results.

Experiments

The processes of following the trajectory using a real humanoid robot for two
scenarios are shown in Figure 5.13 and Figure 5.14, respectively. Each figure
shows results obtained from RRT* and CARRT*, respectively, for the dual-arm
case. The red lines shown in Figure 5.14 represent the trajectories of end-effectors

(i.e., both hands).
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Figure 5.12: The average trajectory cost (in joules) as a function of deadlines for
two manipulation scenarios. The average cost of each algorithm is computed from
10 different runs with random seeds and one standard deviation is shown as error

bars.
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(b) CARRT*

Figure 5.13: Scenario 1: a robot moves hands to hold an object on a table. (a) and
(b) show the process of following a trajectory obtained from RRT* and CARRT*,

respectively from left (initial pose) to right (goal pose).

(a) RRT*

(b) CARRT*

Figure 5.14: Scenario 2: a robot hands over an object from the right hand to the
left hand while avoiding an obstacle on a table. Red lines in both figures represent

trajectories of hands.
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We demonstrate the results of experiments through the torque value and angle
derivative as a function of time shown in Figure 5.15. As explained in Section 5.2,
the proposed algorithm tends to plan a motion while maintaining a specific con-
figuration of the whole arm for energy efficiency. As shown in snapshots of the
first column of Figure 5.13, two hands of the robot are located under the table. In
order to place two hands in the position for holding an object, the robot should
first raise two arms to its side by moving the RShoulderRoll joint. There is a big
difference between two algorithms in terms of the energy consumption between
0s and 15 s. The energy consumption of RRT* is relatively high during this in-
terval. RRT* immediately starts to move the RShoulderRoll joint while keeping
the current joints stationary. However, the initial position of the first scenario
requires more energy when it moves the RShoulderRoll joint. As shown in Fig-
ure 5.15(a), the torque value of RShoulderRoll is high at the beginning. Since
a multiplication of the torque and the angle derivative represents the consumed
energy derivative, it is more efficient to move other joints in the beginning, e.g.,
RShoulderPitch and RElbowRoll, to configurations with less torque values and
then move the RShoulderRoll joint as less as possible, which is what CARRT*

does.

The results are more distinguishable in the second scenario. While RRT* moves
directly to the goal state with less consideration about energy-efficient configura-
tions, the proposed algorithm first lifts both arms vertically and then move arms
horizontally to hand over an object (see red lines shown in Figure 5.14 for the
trajectory). It is confirmed from the torque and angle derivative values shown
in Figure 5.15(b). Since all joints, especially RShoulderRoll, have large torque
values between 0s and 18 s as shown in Figure 5.15(b), the proposed algorithm

changes only RShoulderPitch while raising arms. Then, it gradually increases an-
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Figure 5.16: Costs of paths found by RRT* and the proposed algorithm over

longer time deadlines (in seconds) for one trial.

gle derivatives of RSholderRoll and RElIbowRoll after the torque value of those
joints are reduced.

Even for longer deadlines, the proposed algorithm shows superior performance
compared to RRT* as shown in Figure 5.16. Since dense sampling is required to
find the optimal solution in RRT*, much more time is needed in a high dimen-
sional space. Overall, the proposed algorithm tends to move joints for relatively
less torque values while maintaining a specific configuration of other joints to

reduce the consumed energy.

5.6 Summary

In this chapter, we have presented a cost-aware path planning algorithm which
finds the minimum cost trajectory in a complex configuration space. When a
costmap over a configuration space is available, the proposed algorithm finds a

suitable trajectory of a robot with the minimum cost. Furthermore, it finds a
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highly energy-efficient path for traversing a complex terrain with different eleva-
tion or performing a manipulation task in a high dimensional space. The proposed
method takes advantages of a sampling-based RRT* for exploration and nonmy-
opic tree extension using a stochastic optimization method, cross entropy (CE).
In simulation and experiments using a humanoid robot, the proposed algorithm

finds the more cost-efficient path in a shorter time.
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Chapter 6

Efficient Informative Path

Planning

This chapter extends CAPP developed in chapter 5 to informative path planning
for mobile sensor networks. Our information gathering algorithm is inspired by
the information gathering algorithm based on RRG by Hollinger et al. [55]. In
[55], the asymptotic optimal path is guaranteed for single agent and unnecessary
nodes are efficiently pruned. We follow the similar approach but our algorithm
is based on a more computationally efficient information gathering algorithm for
multiple agents.

In this chapter, we propose a RRG-based planner, called CE-IPP, which ex-
tends the RIG planner [55]. CE-IPP uses cross entropy (CE) [36], a stochastic
optimization method, to efficiently estimate the reachable information gain. The
CE framework allows us to choose a (near) optimal informative trajectory among
trajectory samples which satisfy the budget constraint. The proposed algorithm
guarantees the asymptotic optimality like RRG and ensures to find a (near) opti-

mal informative path to the goal region which satisfies the cost budget constraint,
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if a such path exists. For each node in the graph, the proposed algorithm updates
the lower bound of the reachable information gain of the most informative path to
the goal region, which passes through the node. As more nodes are added to the
graph, the lower bound of the reachable information gain of each node improves

and converges to the maximum value in the limit.

6.1 Problem formulation

Let Q be a region, in which a robot (or a mobile sensor) performs its assigned
sensing tasks. Let X C R"™ be the state space of the mobile sensor, where state
x € X includes the position ¢ € Q. The motion model of the mobile sensor has

the form:
ze41 = f(a(t), u(t)), (6.1)

where u(t) € U C RP is the control input applied at time t.

Let P be the trajectory of a mobile sensor, which is obtained from the motion
model (6.1) for given u(t) from t =0 to t =T € RT, where T is the termination
time. We assume in this dissertation that the motion of the mobile sensor is
deterministic. Let ¥ be a set of all collision-free paths, such that, for P € X,
P(t) € Xfree for t € [0,T]. Let 2 C X be a set of all feasible paths, such that, for
P e Q, P(0) = zinie and P(T) € Tgoq, Where i € X is the initial state and
Tgoqr C X is the goal region. Let ¢ : ¥ — RT be a cost function, e.g., the path
length or the energy consumption of a robot following the path. The goal of a path
planning problem is to find the optimal control input and time parameterizing
the feasible trajectory which minimizes the cost function. We assume that the
cost function returns strictly positive value for any collision-free path and it is

monotonic, additive, and bounded.
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An IPP problem finds a path with the maximum information gain while con-
sidering the cost of the path. We can formulate an IPP problem as the following

optimization problem by placing the cost of a path as a budget constraint:

arg max I(P) subject to ¢(P) < B, (6.2)

Pex

where the function Z : ¥ — R™ returns the information collected along the path
and B € R™ < oo is a budget for the maximum allowed cost. Generally, Z is
submodular, i.e., it has the diminishing return property. It is known that the
problem of finding the optimal solution of a discrete version of (6.2) is NP-hard
[104, 105]. Hence, a greedy algorithm is used in practice by discretizing the search
space. If a path is defined in a continuous space, then solving (6.2) becomes more
challenging.

Let G = (V,€) be a graph, where ¥V and € C V x V are finite sets of vertices
and edges, respectively. We denote PP a trajectory initiated at a and arrived at
b (i.e., P2(0) = a and PY(T) = b). Consider two partial path P’} and P2 with
different termination times Ty and Th, respectively. If P21 (T1) = P?2(0), then we
denote P51|P% as the concatenated trajectory, i.e.,

PUL(t) for all t € [0,T1],

PoIPL(L) =
Pas(t —Th) for all t € (T1, Ty + To).

Given a vertex v € V, a path via v can be defined as follows.

Definition 5. A v-trajectory PV is a feasible concatenated trajectory P°1|PY,
such that PL(Ty) = PL3(0) = v, PUIPLE(0) = @init, Po1|PE(T1 + T2) € Tgoal,
and ¢(Pgi|Pa3) = c(Pai) + c(Pg3) < B.

With a slight abuse of notation, we will allow v € V to be used in place of v’s

corresponding state € X'. Let P}, , be the n-th v-trajectory via a fixed vertex
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Figure 6.1: Illustration of P}y LGm produced by an algorithm ALG. Given x;,;; and
Tgoal, the algorithm ALG finds trajectories P}, for all fixed vertices shown in
red and green circles (e.g., v1,v2). A trajectory Py}, is a n-th trajectory which

passes through the fixed vertex v.

v produced by an algorithm ALG. Since P, follows the Definition 5, it starts
at T;nqt, reaches the goal region and has the cost less than the budget B. For fixed
vertices v1 (red circle) and vy (green circle), Py and Py, are shown in
Figure 6.1. For any fixed vertex v € V, we use gy,n = Z(Pjrq,,) to denote the
amount of information obtained along P}, and define g, = maxgy,; for 1 <

Jj < n. Then the maximum of g, ,, g;;, can be formulated as follows:

g, =limsup guyn. (6.3)

n—oo

Since the algorithm constructs a graph V, a path from x;,; to v for v € V can be

obtained from the graph, so it estimates Py "

, which is a partial path of P}, ..
If there exists a vertex v which gives no P, due to the budget cost, g, at v
is set to 0. We can guarantee that g; < oo for all v € V. Since the cost function

returns monotonically positive value for any collision-free path, any v-trajectory
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has finite length, so the amount of information is bounded. Let {VAF},;cy be the
set, of vertices in the graph obtained from ALG at the end of iteration i. Assuming
that we can update g, at any fixed vertex v € V as n increases, we can have g,
for all v € {VZ-ALG} as ¢ — oo since n — 0o as ¢ — oo. Then the maximum value
among g for all v € {VALEY is the maximum amount of information which can

be obtained from the ALG, i.e.,

max *as i — 00. 6.4
I (6.4)

The optimal informative path planning problem asks for finding a feasible path

with maximum g, so it can be redefined as follows:

Problem 1. Giwen g} for allv € V, find a trajectory via v* such that v* =

arg max,cy g, If there exists no such path, then failure is reported.

By solving Problem 1, we can find the asymptotically optimal path to the goal
via a vertex v € V, which the vertex has the maximum g; value among all ver-
tices included in the graph G. We propose an incremental graph structure based
algorithm that utilizes a stochastic optimization method to generate informative
trajectories satisfying constraints in terms of the cost budget. This stochastic
optimization based method allows for the rapid generation of near optimal tra-

jectories even for complex information quality objectives.

6.2 Cost-Aware informative path planning (CAIPP)

This section deals with the application of the CE method to informative path
planning problem. We present the CE based informative path planning (CE-IPP)
algorithm which finds a path to the goal region while maximizing information gain

within the budget constraint. CE-IPP is based on RRG for optimal planning to

111



Chapter 6. Efficient Informative Path Planning

the goal region and the cross entropy method for solving maximization problem

with inequality constraint. The key procedures can be outlined as:
1. Expand the graph to reach the goal region.

2. Generate a path to the goal within the budget at each node in the graph.

This is done via the CE_Estimate function.
3. Update the lower bound of information at each node in the graph.
4. Repeat the above procedure until termination condition is satisfied.

To proceed the CE method, we need to define the probability density function
(pdf) p(-;0) to update the CE parameters. It can be defined over a space of
parameters # used in generating trajectories in continuous space. The pdf p(-;0)
can be also replaced by M x A probability matrix P = (P,,) for producing
trajectories in discrete state space with M states, where A represents the number
of actions taken at each state [106]. Thus P,,, denotes the probability of taking

action a at state m and the summation of P,,, over a is 1 for all m.

6.2.1 Overall procedure

Algorithm 10 describes the main body of CE-IPP algorithm. The algorithm shares
the overall structure as RRG. However, since the original RRG focuses on opti-
mizing cost along the path without constraint, it has not been applied to infor-
mation gathering problem which maximizes information with budget constraint.
However, since the cost constraint is included additionally, it has not been able
to apply the information gathering problem directly. In order to apply RRG to
information gathering problem, we slightly modify RRG by adding the extra pro-

cedure when the graph grows. This procedure follows the approach presented in
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[55]. Whenever the new node is added, edges are created from near nodes to the
new node and vice versa. In order to determine whether to insert the edge to the
graph or not, we check a cost integrated along the trajectory from x;,s+ to the end
node of the new edge (i.e., near node or new node). If the cost is over the budget,
then the corresponding edge is deleted. Furthermore, in order to find a solution
efficiently, we find a near-optimal path at each node using the cost-to-go value
(i.e., the remained budget at the node) if there exists a feasible path. Then we
can approximate possible information quantity to be able to collect at any node
in the graph. Since CE-IPP follows RRG and each node has the achievable infor-
mation quantity, it guarantees asymptotic optimality while satisfying the budget
constraint and provide an efficient approach for a solution even if any node in the

graph is not contained in the goal region.

The graph V initially contains only one point z;,;; as an initial node. The main
control loop, lines 2-25, terminates once stopping criterion satisfies the condition.
At each iteration, the graph grows by drawing a new sample ., and then
adding edges between x,¢,, and its nearest vertices Tpeqrest Or between e, and
its near vertices Zpeqr as in the RRG algorithm, where if the distance between
Tnearest ANd Tpeqy i over 8, Steer(Tnearests Tnew) TEPOSIIONS Tpeqy to be feasible
and § away from Zpegrest toward Zpey (lines 5-7). A set of Zyeqr in the graph
that are close to Xpey are returned as Xpeqr through Near function (line 8).
Xnear are within a ball of radius r (@)5 centered at x,e, as explained
in [53], where n is the number of vertices in G and d is the state dimension.
The stopping criterion can be the number of iterations after reaching the goal
region from any node in graph, the maximum number of iterations, or a time

deadline. If the line segment connecting between the near nodes and the new

node is not in collision with obstacles, then the edge is inserted into the graph
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and Update_Bound function is called (lines 12-23). A function, Update_Bound,
sets g, at the node v, where g, is the maximum value among the information
quantities gathered along v-trajectories found so far. A v-trajectory is founded
through CE_Estimate function.

Two critical functions of CE-IPP, Update_Bound and CE_Estimate, are de-

scribed below.

6.2.2 Update_Bound

The Update_Bound procedure used in the CE-IPP algorithm is given in Algo-
rithm 11 and shown in Figure 6.2. Whenever the new feasible point @y, is se-
lected, since connections from the x,,¢,,’s all neighbor vertices to the ., is tried,
co-located nodes are generated at Ze,. Figure 6.2(a) shows multiple co-located
nodes of the vertex Zpew (€.8-, Tnew. 1, Tnew.2; Tnew.3). Lhese co-located nodes
represent the vertices which have the same location but different paths Pyrew.
Because the cost of each Pyrev is different, each remaining budget at co-located
nodes is determined according to cost of each Pye». On the other hand, the
co-located nodes of x,eq arise when successful connections from the co-located
nodes of Tpey 1O Tpeqr is done as shown in Figure 6.2(b). Given the co-located
nodes at each vertex, Update_Bound function is performed. After updating the
cost Cyr_; using a co-located node z_i of x (line 3) and the remained budget B,/ _;
(line 4), CE_Estimate finds the near optimal trajectory Pj;‘i‘;“l initiated at each
2’1 to the goal region within B,/ ; and computes the information quantity Z, ;
along ng:i LU P;:/‘i‘;“l (line 5). If a path cannot be found at 2’_i due to the budget
.constraint, CE_Estimate function returns the empty P;;‘i‘;“l and Z,/ ;. Then we

drop the co-located node z’_i, and repeat CE_Estimate for a different 2’ s.

After setting a lower bound on possible information quantity along a path via
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Algorithm 10 CE-IPP

Require: 1. Start position x;,; and goal position yoq

2. Budget B

3. A ball of radius r for neighbors

Ensure: The most informative path from x;n;; to g0 Within B

LYV A{rmit},E+ 0,6+ V,E)C

+~—0

Tinit

2: while stopping_criterion is false do

3:

4:

10:

11:

12:

13:

14:

15:

16:

17:

Tnew < a random sample from Q
Tnearest <— Nearest_Neighbor(V, Tpew);
if ||Zpearests Tnew|| > 0 then
Tnew  Steer(Tnearests Tnew)
end if
Xnear < Near(zpew, )
Gz < 0
V <+ VU {Znew}
T

Tnew

~0
for all zpeqr € Xpear do
if CollisionFree(pear, Tnew) then
E «— EU{(Tnears Tnew) }
Gznew < Update Bound(Zpeqr, Tnew)
end if

end for
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18:  for all Zpeqr € Xpear do

19: if CollisionFree(Tpew, Tnear) then

20: & + EU{(Tnews Tnear) }

21 Gz ear < Update_Bound(Znew, Tnear)
22: end if

23: end for
24: G+ (V)
25: end while

26: Find v which satisfies (6.4)

Algorithm 11 Update Bound(z, 2')

Ensure: g,/
L g < MaXys ey Ly
2: for all z: € x do
30 Cpy+ Cpit+c(xi,a’)
4: By i+ B—-Cu;

;o

5. <'P$goal Ix’,i> < CE,EStimate(I,,xgoah'PLxE :

x4 init’

B:v’,i)

6: if Z,,; > g, then

7: gyt Ix’,i
8: end if
9: end for
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Tpew, & lower bound of each T,

Tnear

along a path via the neighbors of x,e,, is set
by choosing the best information quantity so far. Whenever any vertex x in the
graph is selected as a neighbor of a newly steered vertex, the lower bound of
information along a path via x is updated. Thus the information quantity along

the path via x asymptotically increases to the optimal value.

6.2.3 CE_Estimate

The CE_Estimate function is the modified version of Algorithm 4 outlined in
Section 5.3. The function returns a probabilistically near-optimal trajectory from
any vertex v to the goal region using the remained budget B, at v and the
information quantity collected along the v-trajectory Pv.

Unlike Algorithm 4 which focuses on samples minimizing a cost function, the
function tries to generate samples which maximize an information function con-

sidering the budget constraint and it can be formulated as follows:

max Z(Py

i T Pei U Py subject to c(Py™) < By, (6.5)
where PY U P, = P¥ and B, = B — ¢(PY ). As shown in (6.5), the
CE_Estimate function needs P, as an input to find the near-optimal trajec-
tory from v to the goal. Since the information function used in this dissertation

is submodular, the prior trajectory to v is involved in determining P, ?**'. By

considering P7  as a part of the trajectory P, the following property is satisfied.

I(PY) + Z(PL. NPy < I(PL

Iim't) + I(ngoal)v (6~6)
where P, N Pyeel represents the overlapped portion between two trajectories

’P’U

Zgoal
Tinit and Py :

It is important to generate trajectory samples from p(-;0;) at k& = 0 which

cover the search space well. In this dissertation, it is assumed that p(-; 0) follows
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(a) Update procedure at Tnew

-~ SXgoal
7 Vv Xnear_1

(.’Bnea'r_l) Y I ) ﬁxgoal

(wnea.r_Z)mnea'r —A t'l‘\ sy Xnear 2
near_3 / P e \ — g
r’ ngoal \‘ - “A =
Xnear_3, N "'t, mgoal

Tnew | ~ -m

(:Bnew_;k
(337}531012)

AT

(b) Update procedure at Tnear

Figure 6.2: This figure shows the different paths initiated at multiple co-located
nodes for each vertex in the graph. In (a), once x,¢, is inserted into the graph,
since all edges from three neighbor vertices are added, there exists multiple co-
located nodes of the vertex zpe,. In contrast, in (b) edges from multiple co-located
nodes of Tpew tO Tpeqr generate co-located nodes at Tjeqr. For each vertex in
graph, Update_Bound function determines the best information quantity along

each trajectory estimated at co-located nodes (e.g., 73;: goal
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a normal distribution with the parameter 0 = (ug, Xg) like [79]. By adjusting
the covariance ¥ to cover the region of interest, we can get those initial samples.
However, there exists a limitation in initial sampling since a budget constraint
is added in the procedure of generating samples. The coverage and the budget
are in conflict each other (i.e., for good coverage, more budget is required and
coverage can be poor for small budget). Thus we need to find the feasible region
satisfying the budget for sampling. The parameter 0 consists of m primitives.
In this section, we assume that the primitives are waypoints and the budget
represents the length of the path. This possible subset of states that satisfies the

budget, can then be expressed in closed form in terms of the budget B as

Xsample,free = {$ € Xfreewx - x/HQ + ngoal - x,||2 < B} (67)

which is the general equation of an n-dimensional prolate hyperspheroid (i.e., a
special hyperellipsoid). The focal points are « and x4/, the transverse diameter
is B, and the conjugate diameters are v/B2 — L? as shown in Figure 6.3. In other
words, each waypoint should be sampled in Xsumpie_free Which is determined
depending on the remained budget, i.e., B, — ¢(z). Again we use the truncated

normal distributions based on Xsgmpie_free by following (6.8).

—(z—p)?
202
V2ro[B(E ) — (L] 08

o

exp

f(@lp,p= put o) =

The lower and upper boundary of each sample for m-th primitive is computed
based on the ellipse equation. In the setting of truncated normal distributions,

all primitive samples are obtained by generating successively the components of
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Figure 6.3: The sampling domain, Xsqmple_free, for a R? problem seeking to satisfy
the budget B is an ellipse with the initial state, z, and the goal state, x40q; as
a focal points. A center of the ellipse is denoted as z. The shape of the ellipse

depends on both initial and goal states and the budget B.

N(u: 27 Xsampl&f?“ee% i.e.,

I NN<E(:U1‘:U'27 e 7Mm)7,ulvul_7ui~_ao—%)

wy ~ N (E(palpn, pss - pim), b2, 13 5 13 5 05)

Tm NN(E(MW|M17"' 7“m—1)y/~‘m>/ff;ny,ufy+n,0}2n) (69)

6.3 Analysis of CAIPP

In this section, we show that the trajectory obtained from CA-IPP algorithm
converges to the optimal one as the number of samples goes to infinity, given
some reasonable assumptions. We begin by stating following assumptions from

54, 53, 55].

120



Chapter 6. Efficient Informative Path Planning

Assumption 1. For three different states x1,x2, and x3, we assume that there
exists trajectories which are P2, PS, and Py. If xo € Py, then the concatenated

trajectory Po|PE must be equal to PS and have same cost and information.

This assumption states that the concatenated trajectory is consistent for in-
termediate points and it has consistent cost and information functions. This as-
sumption is required since if infinite samples are added, samples will be infinitely

close together.

Assumption 2. There exists a e-free feasible path m such that the minimal dis-
tance between w and the obstacle region is € for any point x € 7, i.e., B(x) €

Xfree-

This assumption requires that some free space be available around any tra-
jectory for convergence to the optimal trajectory. Final assumption is about the

sample function.

Assumption 3. The sample function returns an independent and identically

distributed sample from Xftree, which are drawn from a uniform distribution.

In order to show that CE-IPP can produce the optimal solution as the number
of samples goes to infinity, we should obtain g} at all v € VZALG as ¢ — oo. It can

be shown by the following lemma.

Theorem 4. Let (), 5 ; denote the set of v-trajectories, where v is contained in the
graph built by CE-IPP at iteration i for budget B. We have that lim;_,o Q0 5, =
QU,B

Proof. See Appendix D. O
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6.4 Simulation and experimental results

6.4.1 Single robot informative path planning

This section is devoted to the effectiveness of the algorithm considered in the dis-
sertation through the following simulations. The simulations were implemented
in MATLAB and run on a computer with a 3.2GHz Intel i7 processor and 8 GB
RAM. All simulations were performed five times for each algorithm using differ-
ent pre-specified random seeds. A first set of simulations were run to illustrate
the different performance of the proposed algorithm and RIG-graph algorithm
presented in [55]. Since RIG-graph shows the asymptotic optimality, we examine
how efficiently the algorithm finds the solution. First, we assume the following
simple variance map which represents the uncertainty of the sensing field with
a 10 km x 10 km environment. For fair comparison, the map is made similarly
to the map used to apply RIG-graph to continuous space in [55] using Gaussian
Process. We deployed 74 static sensors on equally spaced 11 by 11 grid points for
the initial uncertainty map. By placing the static sensors, the initial map has a
certain region which has high uncertainty than other regions as shown in Figure
6.4. High uncertainty is represented by red and low uncertainty is represented
by blue. We assume that we can estimate the uncertainty map by measuring
the static sensors at all times. The vehicle used in this dissertation can move
1 km distance in a continuous space based on the point-mass dynamics. Any
other dynamics can be also applied to the algorithm. In order to capture the
informativeness of the trajectory, we chose maximizing the reduction in variance
of the field as the information function used in [50]. Since the selected informa-
tion function is submodular, it requires discretized grid space as an input, so we

convert the path found in continuous space to points in 11 by 11 grid space by
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choosing the closest grid point. Furthermore, as [55] assume, we also assume that
taking multiple measurements at the same location does not affect the collected
information quantity. While [55] used the discrete environments to show the per-
formance for finding the optimal solution, all simulations in this dissertation were
run in the continuous environment with the 8 km budget constraint. Since there
exists a fixed goal region, we limit the graph extension when the remaining bud-
get of the node exceeds the shortest distance from the node to the goal region.
Figure 6.4 shows a visual comparison of the RIG-graph and CE-IPP through
sequential process of building a graph and obtaining the maximum informative
trajectory from the graph. A white and black rectangle represent the start point
and the goal region, respectively and cyan dots is the vertices in the graph. The
maximum informative trajectory is represented by a black line. Since the pro-
posed algorithm estimates the near-optimal path using CE at any node of the
graph, more computation is required when the algorithm iterates for inserting a
new node. However, CE-IPP returns an initial informative path more efficiently
than RIG-graph since it can estimate the path using the remained budget at any
node even if the graph does not reach the goal region. Moreover, the initially
obtained path from CE-IPP is more informative than the results obtained from
RIG-graph for much longer running time, thus convergence rate is much faster
than RIG-graph. The results for five simulations are shown in Figure 6.5(a) for
the maximum value of the informative path as a function of running time. For

all trials, the proposed algorithm shows the superior performance.

The performance is more distinguishable in a complex map. As shown in Figure
6.6, we placed 17 sensors randomly to make a complex map and set the budget
to 20 to cover the whole region. The trajectory obtained from CE-IPP passes

by covering high uncertainty regions over the whole search space. Figure 6.5(b)
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shows five results of each algorithm. Again, the proposed algorithm finds the
near-optimal solution efficiently compared to RIG-graph. As mentioned in the
previous section, when RIG-graph computes the maximally reachable informa-
tion to prune any co-located node which does not affect in terms of the optimality
of the algorithm, a reachable region (i.e., a set of points which cover the region)
is required. However, the reachable region is the same for many co-located nodes
when a large initial budget is given, thereby causing pruning procedure meaning-
less. Furthermore, we scaled the grid size of the map to 21 x 21 with the same
sensor placements and applied both algorithms. There is no big difference for
CE-IPP even if the size of the map increases. On the other hand, RIG-graph
requires more time for the bigger size map.

Hence, the proposed CE-IPP algorithm finds near optimal solution very quickly
showing superior performance in computation efficiency and robustness for the

size of the map compared to the RIG-graph algorithm.

6.4.2 Multi robot informative path planning

One approach for extending any single robot planning algorithm to plan simul-
taneous paths with multiple robots is to form a new graph where each node
represents the vector of locations of all k robots, and then apply the single robot
algorithm to this product graph. Unfortunately, the size of this product graph
grows exponentially in k, which is infeasible for large teams of robots. However,
in order to find the optimal path for each robot while performing a planning
task simultaneously, such product graph is essential. One of the strength of the
proposed algorithm is efficient in high dimensional space. Therefore, we applied
the proposed algorithm in the product space. First we tested in the complex map

explained in 6.4.1. In order to compare the results, we also applied the proposed
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Figure 6.6: The results of two algorithms, RIG-graph (a) and CE-IPP (b), applied

to the complex map generated using 17 static sensors.
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algorithm in a greedy manner. In other words, after finding a path for a single
robot within the time deadline, we found a path for another robot during the time
deadline. We compared results for different running time using different number
of robots. For fair comparison, we first set the total running time and distribute
the time deadline to run single planning for each robot in greedy version. Figure
6.7 shows the obtained information from two approaches. For all cases, the results
are superior to greedy version.

We also tested using another scenario which represents sea surface tempera-
ture field of Gulf of Mexico as shown in Figure 6.8. Red color represents high
temperature and blue color represents low temperature. We placed no initial sen-
sors and all robots have the same start point and goal region. Figure 6.9 and
Figure 6.10 shows the trajectory results obtained from two different approaches,
respectively. As shown in those figures, there exists the overlap region in greedy
version. Since large overlap region means obtaining redundant information, the
solutions are long way from the optimal solutions. However, the proposed multi
robot planning approach finds much better solutions within the same running

time.

6.5 Summary

We have presented a new approach which solves the informative path planning
problem over continuous space for environmental monitoring. The proposed al-
gorithm combines the sampling based planning method, RRG, and stochastic
optimization method, CE. It guarantees asymptotic optimality, but, in addition,
it can also return the near-optimal informative path at any node of the con-
structed spanning graph if there exists a path satisfying the constraint in terms

of the cost function. We have shown that the proposed algorithm finds the optimal
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Figure 6.7: The results of two approaches, greedy version and proposed method

for different number of agents from 2 to 5 during the different running time.
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Figure 6.8: Sea surface temperature field of Gulf of Mexico. Red region represents

high temperature and blue region represents low temperature.

# agent:[2] info : 0.418396 # agent:[3] info : 0.528537

(a) 2 agents (b) 3 agents

Figure 6.9: Trajectory results using two and three agents in a greedy manner.
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# agent:[2] info : 0.425916 # agent:[3] info : 0.548796

(a) 2 agents (b) 3 agents

Figure 6.10: Trajectory results using two and three agents in a proposed multi-

robot planning approach.

solution more efficiently by comparing against the state-of-the-art algorithm and
show scalability of the proposed algorithm regardless of the size of grid resolution

even when the search space is complex.
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Conclusion and Future Work

In this dissertation, we have solved two key fundamental problems in mobile sen-
sor networks, which are localization and coordination problems of agents. For
localization problem, we have presented a coordinated localization algorithm for
mobile sensor networks. The global positioning system is able to provide syn-
chronization and localization information, however in many situations, especially
indoor environment, it cannot be relied on, and alternative methods are required.
Therefore, we have designed the algorithm to solve the challenging localization
problem under the GPS denied or unstructured indoor environment using an
inexpensive off-the-shelf platform. By taking the advantage of a multi-agent sys-
tem, we have shown that we can reliably localize robots over time as they perform
a group task. In experiment, we have demonstrated that the proposed method

consistently achieves a small localization error for long trajectories.

After developing the multi-robot localization system, we have presented a novel
approach to handle the coordination of multiple agents for mobile sensor net-
works. Since robots perform tasks in a complex configuration space, where it has

environmental parameters such as temperature, humidity, chemical concentra-
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tion, stealthiness and elevation or has more than three dimensions, robots can
be navigated efficiently through cost-aware planner for the given environment.
Unlike the traditional methods, While sampling-based path planning algorithms,
such as rapidly-exploring random tree (RRT) and its variants, have been highly
effective for general path planning problems, it is still difficult or inefficient to find
the minimum cost path in a complex space since RRT-based algorithms extend
a search tree locally, requiring a large number of samples to find a good solu-
tion. The proposed algorithm uses global stochastic optimization method based
on sampling based algorithm. By using global stochastic optimization method for
tree extension, we have shown that the proposed method finds the minimum cost
in the space with environmental parameters and a highly energy-efficient path
for traversing a complex terrain with different elevation or performing a manip-
ulation task in a high dimensional space. Furthermore, we have shown that the
proposed algorithm has the probabilistic completeness property and asymptotic
optimality when the number of samples goes to infinity.

We have also presented an efficient information gathering strategy suitable for
mobile sensor networks. Resource constraints prevent us from using traditional
coordination methods, because these typically require bulky, expensive, and so-
phisticated sensors, substantial memory and processor allocation, and a generous
power supply. We describe the optimal planning method controlling mobile nodes
in order to satisfy the resource constraints while collecting data.

For future works, more theoretical analysis about the convergence rate for
the proposed algorithm and deep analysis for global stochastic optimization are
required. Moreover, we will perform experiments using real robot to estimate the

environmental field such as temperature of building and chemical concentration.
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Appendix A

Proof of Theorem 1

We first need the following lemma to prove Theorem 1 and Theorem 2.

Lemma 1. Assume that there exists an input u € U = [Upmin, Umaz], Which steers
a robot from x(t) = x € Xppee to x(t + At) = 2’ € Re(z) for some At > 0 and
€ > 0. Then, there exists ¢ > 0, such that a randomly chosen input from U has

the probability at least ¢ of steering a robot from x to a point in Be(z').

Proof. If the state of the robot is at x at time ¢, the state at time t + At is

2(t+ At) = 2(t) + [T f(2(t), u(t))dt. Since

_dz _x(t+ At) — (1)

for small amount of time At, the solution can be written as
z(t+At) =2 =z + Atf(z,u) + &, (A.2)

where & is the high order term. If a perturbed input, u + 9, is applied to the

system for small §, then the state z at time ¢ + At is as follows:

2(t+ At) =z + Atf(x,u+0) + &. (A.3)
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Provided that [ — & is negligible for small At, we can find § such that ||x(t 4+
At) — z(t+ At)|| < e since f is a smooth function and Lipschitz continuous with
respect to x and w in our operating domain. Hence, with probability at least

¢ = 16|/ (Umaz — Umin) > 0, we can randomly select an input to steer the robot to

B(x'). O

We now prove Theorem 1. Suppose that there is an e-free feasible path from the
starting point z;,; to the goal region x4,,. Then there exists a sequence of inputs
UQ, - - ., Uk, such that xog = Tinit, 1, ..., Tpy1 and Tp41 € Tgoa- We can then follow
the proof of Theorem 3 in [29] to show the probabilistic completeness of RRT

with inputs randomly selected from a bounded continuous set using Lemma, 1.
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Proof of Theorem 2

CARRT* attempts to perform a long extension towards x,q,q if the distance
between Tpeqrest and Tpqnq is larger than n. Hence, if we can show that an or-
dinary RRT algorithm can construct a tree with a long extension constructed
by CARRT*, Theorem 1 can be applied to show the probabilistic complete-
ness of CARRT*. Suppose that there exists an e-free feasible path 7 (t) from
Tnearest = T(0) t0 Tpang = 7(T) towards x,qnq. We first construct a set of balls of
radius at least €, B = {By,..., B}, covering m. The center of By iS Tpeqrest and
the centers of two consecutive balls are exactly ||7(t) — 7(t + At)|| apart. Each
ball B,, for m € {1,..., M} has radius € centered at each configuration m(mAt)
for allm € {1,2,..., M}, where T = M At. Without loss of generality, we assume
that all vertices in the RRT tree, except Zpearest, are at least (1 4 i)e away from

B; for all 7.

From Lemma 1, we know that Z,eqrest can reach within By with a positive
probability for a random input on some time interval [0, At], Now, we extend
the applied input time to 2At. By the Lipschitz continuity of the system and

the existence of an e-free feasible path to the goal, there exists Roc(Znearest) and
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Roe(Tnearest) VB is measurable. Hence, we can find a nonempty range of inputs to
steer from a state in Roc(Tnearest) N B1 to a state in By on time interval [At, 2At]
using Lemma 1 again. Thus, we can sample inputs sequentially such that each
new vertex added to the RRT tree falls in each ball B,, sequentially. Since M is
finite, there is a positive probability that a long extension from Zjecqrest t0 Trand

can be added by the RRT algorithm.
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Appendix C

Proof of Theorem 3

The proof of the theorem is similar to that of Theorem 38 in [53] for holonomic
dynamical system and Theorem 5 in [107] for nonholonomic dynamical system.
We first review the asymptotic optimality condition of RRT* and show that
CARRT* satisfies those conditions. In order to show the asymptotic optimality
of RRT*, we begin with the construction of a sequence of paths {m,} of ¢,-free
feasible paths from .t to Zg40q and show that m, converges to the optimal
path 7* as n — oo by making a set of ball sequences {B,,}, such that B,, covers
my, for all n [53]. Consider any sequence B, = {Bn1,...,Bym} from {B,}. If
each ball contains at least one vertex of RRT* with probability one, then a
vertex x in B, ,, is connected to a vertex z’ in the consecutive ball B,, 41 for
all m. This is possible due to the choice of vrrrs« and the connection radius

log(n)

Ty = 'yRRT*(i)zli. Let 7/, be a path obtained by RRT* after n iterations. It

n

is shown that 7], converges to m, as n increases with probability one. Since 7,
converges to m, and m, converges to 7*, RRT* is asymptotically optimal. Hence,
the critical condition for the asymptotic optimality is that vertices within radius

r, are connected in a cost-efficient manner.
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At the end of every iteration, CARRT* grows by generating the path P*(¢) from
x = P*(0) to 2’ = P*(T) towards x,q,q for any random point z,,,q like RRT*.
However, since CARRT* performs a long extension for ||z — Z,qnql|| > 1, P*(t) is
obtained by applying sequentially sampled inputs with time interval At from x to
2’ unlike RRT*. In order to insert the whole path P*(¢) to the tree without losing
information of P*(¢), we first discretize P*(t) into a set of vertices {xo,...,zx}
with time interval At, located at P*(kAt), where zp = z,...,2x = 2’ and
T = KAt. Then, for a set of vertices, {x1,...,xx}, except 9, CARRT* regards
each vertex as a new vertex added to the RRT tree and sequentially inserts
xp and edge to xp to the tree. For any vertex xj inserted to tree, CARRT*
performs the rewiring procedure by attempting to create an edge from the vertex
xp to its neighbors within radius 7, = 'YRRT*(%)%- Note that since CARRT*
adds several vertices to the tree in a single iteration unlike RRT*, n denotes the
number of vertices in the tree. On this account, we can show the existence of
the connection between balls with radius r,. Using this fact and Lemma 71 in
[53], we know that each ball in B,, contains vertices and every subsequent balls in
B, are connected via vertices with probability one as n increases. It follows that

P(limy, 00 7, = 7*) = 1 due to Lemma 72 in [53]. Hence, CARRT* returns an

optimal solution asymptotically as desired.
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Proof of Theorem 4

(Sketch) The proof of this lemma follows directly from Lemma 4.4 by Hollinger
and Sukhatme [55]. They stated that all feasible trajectories for budget B can
be generated if the algorithm builds an infinitely dense connected graph and
the length of all feasible trajectories obtained from the algorithm is finite. If
the number of samples goes to infinity within a ball around any x € Xy, the
graph within the ball becomes the dense connected graph and this procedure can
be extended to all x, thereby giving an infinitely dense connected graph within
Xree. Since the proposed algorithm follows the RRG structure like algorithms
proposed in [53, 54, 55], it can also build such a graph. Furthermore, as explained
in Section 6.1, any path included in €, 5 ; has finite length. Since €, 5 is included
in the set of all feasible trajectories for budget B, the graph built by the proposed

algorithm contains all trajectories via v.
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Dubins’ curve

Dubins’ curves represent the shortest path between any two configurations and
each path in Dubins’ curves can be generated using three primitive motions which
are left (L), right(R) turn, and straight (S) motion. Such path has the minimum
turning radius p (i.e.,p = 1) and moves at constant velocity [92]. Dubins’ curves

consist of possibly optimal six paths which are
{LSL,RSR,RSL,LSR, RLR,LRL}. (E.1)

To be more precise, the duration of each primitive should be specified. Let any
subscripts (t, p, q) denote total amount of rotation that accumulates during the
application of the primitive for turning motion or the total distance traveled for
straight motion. Using such subscripts, the Dubins’ curves can be more precisely

presented as
{LqSpLt, RgSp Ry, RySpLy, LySpRy, RqgLy Ry, LyR, Ly } (E.2)

We derive the equations for the length of each path based on [108] given the

initial and final configuration in this dissertation. We first define three motion
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operators for any configuration as follows:

Ly(z,y,0) = (x4+S@+v)—S0),y—C(@+v)+C(0),0+v) (E.Z3)
Ry(z,y,0) = (z—S0O—-v)+S5),y+CO—v)—C(0),0—v) (E.A4)

Sp(z,y,0) = (x4+vC(0),y+v5(0),6), (E.5)

where L,(z,y, 0) is the result configuration when applying left turn motion oper-
ator at (x,y,0) and v represents the moving distance along the motion segment.
Suppose that a path starts at (0,0, «) and ends at (d, 0, 3). Then the length of

each path is formulated as follows:

(1) LgS,L4(0,0,0) = (d,0, B). (E.6)

Through the motion operators (E.3), this path can be represented by three scalar

equations as follows:

pcos(a+t) —sin(a) +sin(f) = d (E.7)
psin(a +t) 4 cos(a) — cos(B) =0 (E.8)
a+t+q= f{mod2r}. (E.9)

The solution for ¢, p, q is found as

dy — C(a) + C(B)
dz + S(a) — S(B)
p = V2+A-2C(a—B)+2dz(S(a) — S(B)) — 2dy(C(a) — C(B))

t = —a+arctan( ) (E.10)

q = B—a—t

(2) Ry(Sp(R:(0,0,0))) = (d,0,5). (E.11)
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Three scalar equations:

pcos(a —t) +sin(a) —sin(fB) =d (E.12)
psin(a —t) — cos(a) + cos(B) =0 (E.13)
a—t—q=F{mod27}. (E.14)

The solution is

dy + C(a) — C(B)
dx — S(a) + S(5)
p = V2+A-20C(a— )+ 2dz(—S(a) + S(B)) + 2dy(C(a) — C(B))

t = a—arctan( ) (E.15)

g = a—t—p
(3) Rq(Sp(Le(0,0,a))) = (d, 0, 5). (E.16)

Three scalar equations are

peos(a +t) + 2sin(a + t) — sin(a) —sin(f) = d (E.17)
psin(a +t) — 2cos(a +t) + cos(a) + cos(5) =0 (E.18)
a+t—q= F{mod2r}. (E.19)

The solution of this system is

—p(=dy + C(a) + C(B)) + 2(dx + S(a) + S(8))
p*+4

p = V-2+A4+20(a - B)+2dx(S(a) + S(8)) - 2dy(C(a) + C(B))

t = —a+arcsin( ) (E.20)

q = a+t—p
(4) Lq(Sp(R¢(0,0,))) = (d,0, 8). (E.21)

The corresponding scalar equations are

pcos(a —t) — 2sin(a — t) + sin(a) +sin(8) = d (E.22)

psin(a — t) + 2 cos(a — t) — cos(a)) — cos(fB) =0 (E.23)
a—t+q= f{mod27}. (E.24)
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The corresponding solution is

p(dy + C(a) + C(B)) + 2(=dz + S(a) + S(8))
p*+4

p = V-2+A+2C(a—B)—2dz(S(a) + S(B)) + 2dy(C(a) + C(B))

) (B.25)

t = «a— arcsin(

g = a+t—p

(5) Ro(Lp(Ri(0,0,0))) = (d,0, 5). (E.26)

Scalar equations:
2sin(o — t + p) — 2sin(a — t) + sin(«w) —sin(B) = d (E.27)
—2cos(a—t+p) + 2cos(a —t) — cos(a) 4 cos(B) =0 (E.28)
a—t+p—q=F{mod2r}. (E.29)

The solution of this system is

dy + C(a) — C(B)
dz — S(a) + S(B)

p = arccos (é(ﬁ ~A+2C(a - B) + 2d2(S(a) — S(8))) — 2dy(C(a) — C(B))))

) (E.30)

t = a+ g — arctan(

g = a—B—t+p
(6) Lg(Ry(L(0,0,))) = (4,0, B). (E.31)

The corresponding scalar equations are

—2sin(a +t — p) + 2sin(a + t) — sin(a) +sin(8) = d (E.32)
2cos(a+1t—p) —2cos(a +t) + cos(a) — cos(f) =0 (E.33)
a+t—p+q=f{mod2r}. (E.34)

The corresponding solution is

_ p dy — C(a) + C(B)
t = —a+§—|—arctan(dx+s(a)_5(6)

p = arccos (é(G —A+2C(a—B) —2dz(S(a) — S(B))) + 2dy(C(a) — C(B))))

) (E.35)

q = —a+p—-t+p,
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where A represents dz? + dy? and C(-) and S(-) represent cos(-) and sin(-), re-

spectively.
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