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Abstract

The area of wireless sensor networks has flourished over the past decade due

to advances in micro-electro-mechanical sensors, low power communication and

computing protocols, and embedded microprocessors. Recently, there has been

a growing interest in mobile sensor networks, along with the development of

robotics, and mobile sensor networks have enabled networked sensing system to

solve the challenging issues of wireless sensor networks by adding mobility into

many different applications of wireless sensor networks. Nonetheless, there are

many challenges to be addressed in mobile sensor networks. Among these, the

estimation for the exact location is perhaps the most important to obtain high

fidelity of the sensory information. Moreover, planning should be required to send

the mobile sensors to sensing location considering the region of interest, prior to

sensor placements. These are the fundamental problems in realizing mobile sensor

networks which is capable of performing monitoring mission in unstructured and

dynamic environment.

In this dissertation, we take an advantage of mobility which mobile sensor net-

works possess and develop localization and path planning algorithms suitable for

mobile sensor networks. We also design coverage control strategy using resource-

constrained mobile sensors by taking advantages of the proposed path planning

method.

The dissertation starts with the localization problem, one of the fundamen-

tal issue in mobile sensor networks. Although global positioning system (GPS)

can perform relatively accurate localization, it is not feasible in many situations,

especially indoor environment and costs a tremendous amount in deploying all

robots equipped with GPS sensors. Thus we develop the indoor localization sys-

tem suitable for mobile sensor networks using inexpensive robot platform. We



focus on the technique that relies primarily on the camera sensor. Since it costs

less than other sensors, all mobile robots can be easily equipped with cameras.

In this dissertation, we demonstrate that the proposed method is suitable for

mobile sensor networks requiring an inexpensive off-the-shelf robotic platform,

by showing that it provides consistently robust location information for low-cost

noisy sensors.

We also focus on another fundamental issue of mobile sensor networks which

is a path planning problem in order to deploy mobile sensors in specific loca-

tions. Unlike the traditional planning methods, we present an efficient cost-aware

planning method suitable for mobile sensor networks by considering the given

environment, where it has environmental parameters such as temperature, hu-

midity, chemical concentration, stealthiness and elevation. A global stochastic

optimization method is used to improve the efficiency of the sampling based plan-

ning algorithm. This dissertation presents the first approach of sampling based

planning using global tree extension.

Based on the proposed planning method, we also presents a general framework

for modeling a coverage control system consisting of multiple robots with resource

constraints suitable for mobile sensor networks. We describe the optimal informa-

tive planning methods which deal with maximization problem with constraints

using global stochastic optimization method. In addition, we describe how to

find trajectories for multiple robots efficiently to estimate the environmental field

using information obtained from all robots.

Keywords: Indoor localization system, Cost-aware path planning, coverage con-

trol for multi-robot
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Abstract

The area of wireless sensor networks has flourished over the past decade due

to advances in micro-electro-mechanical sensors, low power communication and

computing protocols, and embedded microprocessors. Recently, there has been

a growing interest in mobile sensor networks, along with the development of

robotics, and mobile sensor networks have enabled networked sensing system to

solve the challenging issues of wireless sensor networks by adding mobility into

many different applications of wireless sensor networks. Nonetheless, there are

many challenges to be addressed in mobile sensor networks. Among these, the

estimation for the exact location is perhaps the most important to obtain high

fidelity of the sensory information. Moreover, planning should be required to send

the mobile sensors to sensing location considering the region of interest, prior to

sensor placements. These are the fundamental problems in realizing mobile sensor

networks which is capable of performing monitoring mission in unstructured and

dynamic environment.

In this dissertation, we take an advantage of mobility which mobile sensor net-

works possess and develop localization and path planning algorithms suitable for

mobile sensor networks. We also design coverage control strategy using resource-

constrained mobile sensors by taking advantages of the proposed path planning

method.

The dissertation starts with the localization problem, one of the fundamen-

tal issue in mobile sensor networks. Although global positioning system (GPS)

can perform relatively accurate localization, it is not feasible in many situations,

especially indoor environment and costs a tremendous amount in deploying all

robots equipped with GPS sensors. Thus we develop the indoor localization sys-

tem suitable for mobile sensor networks using inexpensive robot platform. We
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focus on the technique that relies primarily on the camera sensor. Since it costs

less than other sensors, all mobile robots can be easily equipped with cameras.

In this dissertation, we demonstrate that the proposed method is suitable for

mobile sensor networks requiring an inexpensive off-the-shelf robotic platform,

by showing that it provides consistently robust location information for low-cost

noisy sensors.

We also focus on another fundamental issue of mobile sensor networks which

is a path planning problem in order to deploy mobile sensors in specific loca-

tions. Unlike the traditional planning methods, we present an efficient cost-aware

planning method suitable for mobile sensor networks by considering the given

environment, where it has environmental parameters such as temperature, hu-

midity, chemical concentration, stealthiness and elevation. A global stochastic

optimization method is used to improve the efficiency of the sampling based plan-

ning algorithm. This dissertation presents the first approach of sampling based

planning using global tree extension.

Based on the proposed planning method, we also presents a general framework

for modeling a coverage control system consisting of multiple robots with resource

constraints suitable for mobile sensor networks. We describe the optimal informa-

tive planning methods which deal with maximization problem with constraints

using global stochastic optimization method. In addition, we describe how to

find trajectories for multiple robots efficiently to estimate the environmental field

using information obtained from all robots.

Keywords: Indoor localization system, Cost-aware path planning, coverage con-

trol for multi-robot
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Chapter 1

Introduction

1.1 Mobile Sensor networks

As the future of computing moves toward pervasive and ubiquitous platforms,

we find ourselves in need of hardware, software, protocols and methodologies

that promote their practical use. Wireless sensor networks (WSNs) are a per-

fect example of this developing technology. WSNs, which are new information

technologies, collect information over the physical world via wireless sensing de-

vices (sensor nodes or mote) which is deployed in the physical world and have

already demonstrated their utility in a wide range of applications for monitoring,

event detection, and control, including environment monitoring, building comfort

control, traffic control, manufacturing and plant automation, and military surveil-

lance applications (see [1] and references therein). As WSNs and other embedded

computing technologies continue to evolve, it is imperative that we stay abreast

of the challenges that arise in order to enable a seamless transfer to general pub-

lic utilization. The greatest challenge we face when working with WSNs is their

resource limitations. Memory, processor, communication rage, power supply, and
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Chapter 1. Introduction

hardware quality have all been minimized in order to develop inexpensive, general-

use sensor nodes with small form factors. The advantage of this approach is that

hundreds of these devices can be deployed over a wide (possibly remote) area, at

little cost, and handle tasks for which PC-class devices would not be well suited.

Sensor network deployments are often determined by the application. Nodes can

be placed in a grid, randomly, surrounding an object of interest, or in countless

other arrangements. In many situations, an optimal deployment is unknown until

the sensor nodes start collecting and processing data. For deployments in remote

or wide areas, rearranging node positions is generally infeasible. Furthermore

faced with the uncertain nature of the environment, stationary sensor networks

are sometimes inadequate. However, when nodes are mobile, redeployment is pos-

sible. In fact, it has been shown that the integration of mobile entities into WSNs

improves coverage, and hence, utility of the sensor network deployment and shows

superior performance in terms of its adaptability and high-resolution sampling

capability [2]. Mobility enables more versatile sensing applications as well.

Mobile sensor networks (MSNs) are a distributed collection of mobile robots

each of which has sensing, computation, wireless communication, and mobility

capabilities. This network of mobile robots with sensors is usually deployed in

a large geographical area and collaborates among themselves to form a wireless

sensor network in performing collaborative sensing to monitor and improve the

quality of sensing of the environment. MSNs can efficiently acquire information

by increasing sensing coverage both in space and time, thereby resulting in robust

sensing under the dynamic and uncertain environments. While a mobile sensor

network shares the same limitations of wireless sensor networks in terms of its

short communication range, limited memory, and limited computational power,

it can perform complex tasks, ranging from scouting and reconnaissance to en-
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Chapter 1. Introduction

vironmental monitoring and surveillance by cooperating with other agents as a

group. There is a growing interest in mobile sensor networks and it has received

significant attention recently [3, 4, 5, 6, 7].

1.1.1 Challenges

Since WSNs consist of static sensors, several assumptions (e.g., known sensor

position and static topology) are required to obtain accurate information from our

environment. Thus it is important to understand how such assumptions change

when mobility is integrated into the sensor network.

� Localization. One of the most significant challenges for MSNs is to know

the exact locations of mobile sensors. The reliability of quality of informa-

tion obtained from sensors depends on how exact the location of sensor is.

In statically deployed sensor networks, Sensor position can be determined

once when initially deployed since there is no change in movement. However

in MSNs, location information for mobile sensors must be updated contin-

uously as they frequently transfer to different locations to cover the sensing

region. It requires real-time localization service, as well as time and energy.

� Path planning. Mobile sensors usually work in dynamic environment, so

they should be moved from one location to another to obtain more infor-

mation. Planning procedures should be performed prior to coordination of

mobile sensors. Path planning has been studied extensively, however, many

of the published techniques are inefficient for MSNs because they focus

on the length or time of the path or time without considering the sensing

region.

� Coverage control. MSNs can obtain the optimal information without requir-
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Chapter 1. Introduction

ing dense placement of sensors. However since mobile sensors are resource-

constrained, traversing to cover the whole region causes unnecessary energy

consumption. Therefore, mobile sensors should be controlled to obtain as

much information as possible with the minimum energy. There has been

many researches for coverage control problem, but most of them is limited

to the discretized space, so they cannot be easily applied to MSNs.

These are the goal of this dissertation. The main objectives of this dissertation

are

� development of robust indoor localization using inexpensive robotic plat-

form for mobile sensor networks;

� design cost-aware coordination system using mobile sensor nodes based on

the environmental parameters; and

� implementation and evaluation of information gathering strategy based on

the proposed cost-aware coordination.

There are other challenges in developing mobile sensor network system that are

not addressed in this dissertation. On the hardware side, we need an inexpensive

mobile sensor node which operates with low power consumption for a long-term

deployment. On software side, we need reliable and robust communication and

time synchronization protocols.

1.2 Overview of the Dissertation

Chapter 2 explains why existing methods for the challenging issues that are ad-

dressed in this dissertation are not suitable for mobile sensor networks and suggest

6



Chapter 1. Introduction

the proposed methods are the solutions for the challenging issues in mobile sensor

networks.

In Chapter 3, we describe a vision-based coordinated localization algorithm for

mobile sensor networks with camera sensors to operate under GPS denied ar-

eas or indoor environments. Mobile robots are partitioned into two groups. One

group moves within the field of views of remaining stationary robots. The moving

robots are tracked by stationary robots and their trajectories are used as spatio-

temporal features. From these spatio-temporal features, relative poses of robots

are computed using multi-view geometry and a group of robots is localized with

respect to the reference coordinate based on the proposed multi-robot localiza-

tion. Once poses of all robots are recovered, a group of robots moves from one

location to another while maintaining the formation of robots for coordinated

localization under the proposed multi-robot navigation strategy. By taking the

advantage of a multi-agent system, we can reliably localize robots over time as

they perform a group task. In experiment, we demonstrate that the proposed

method consistently achieves a localization error rate of 0.37% or less for tra-

jectories of length between 715 cm and 890 cm using an inexpensive off-the-shelf

robotic platform. This chapter is based on [8].

Chapter 4 introduces the related works which evaluates the quality of the path

considering the environmental field and the primary algorithms which form the

basis of the proposed planning methods, which are sampling based path planning

algorithms and stochastic optimization based path planing algorithm.

In Chapter 5, we develop a cost-effective motion planning method for robots op-

erating in complex and realistic environments. While sampling-based path plan-

ning algorithms, such as rapidly-exploring random tree (RRT) and its variants,

have been highly effective for general path planning problems, it is still difficult
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Chapter 1. Introduction

to find the minimum cost path in a complex space efficiently since RRT-based al-

gorithms extend a search tree locally, requiring a large number of samples before

finding a good solution. This chapter presents an efficient nonmyopic path plan-

ning algorithm by combining RRT* and a stochastic optimization method, called

cross entropy. The proposed method constructs two RRT trees: the first tree is a

standard RRT* tree which is used to determine the nearest node in the tree to be

extended to a randomly chosen point and the second tree contains the first tree

with additional long extensions. By maintaining two separate trees, we can grow

the search tree non-myopically to improve the efficiency of the algorithm while

ensuring the asymptotic optimality of RRT*. From an extensive set of simula-

tions and experiments using mobile and humanoid robots, we demonstrate that

the proposed method consistently finds a path with the lowest cost faster than

existing algorithms. This chapter is based on [9].

Chapter 6 presents a novel informative path planning algorithm using an ac-

tive sensor for efficient environmental monitoring. While state-of-the-art algo-

rithms find the optimal path in a continuous space using sampling-based planning

method, such as rapidly-exploring random graphs (RRG), there are still some key

limitations, such as computation complexity and scalability. We propose an effi-

cient information gathering algorithm using RRG and a stochastic optimization

method, cross entropy (CE), to estimate the reachable information gain of each

node of the graph. The proposed algorithm maintains the asymptotic optimal-

ity of RRG and finds the most informative path satisfying the cost constraint.

We demonstrate that the proposed algorithm finds a (near) optimal solution ef-

ficiently compared to the state-of-the-art algorithm and show the scalability of

the proposed method.
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Chapter 2

Background

We deal with challenging fundamental issues of mobile sensor networks such as

localization, path planning, and coverage control in this dissertation. Many re-

searchers have extensively studied to solve those problems. However, they have

focused on solving problems without considering conditions which mobile sensor

networks require. In this chapter, we introduce the existing methods for solving

localization, path planning, and coverage control problems and their limitations,

and suggest that the proposed methods are suitable for mobile sensor networks.

2.1 Localization in MSNs

In order to perform sensing or coordination using mobile sensor networks, local-

ization of all sensor nodes is of paramount importance. A number of localization

algorithms have been proposed for stationary sensor networks, e.g., [10, 11]. At

present, the most widely used method for localization is NAVSTAR Global Po-

sitioning System (GPS) [12]. Approximately 24 satellites included in the system

orbit the planet while transmitting the signal consistently. The location informa-

tion is determined using signals from at least four satellites (one signal is used to
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adjust the local clock uncertainty) based on trilateration method. Commercial use

GPS has less than 10 meters and 0.1 microsecond accuracy in position and time

synchronization, respectively. But they are applicable for outdoor environment

and precise indoor localization is still a challenging problem [13, 14]. (For more

information about various localization methods for wireless sensor networks, see

references in [10, 11, 13, 14].) One promising approach to indoor localization is

based on the ultra-wideband (UWB) radio technology [15]. But as stated in [15],

the minimum achievable positioning error can be in the order of 10 cm’s and it

is not accurate enough to control and coordinate a group of robots. In addition,

the method requires highly accurate time synchronization. In order to address

these issues, UWB based localization is combined with infrared sensors using a

team of mobile agents in [16]. However, it requires the deployment of UWB de-

tectors in advance, which is not suitable for mobile sensor networks operating

under uncertain or unstructured environments.

Localization using camera sensors has been widely studied in the computer vi-

sion community. Taylor et al. [17] used controllable light sources to localize sensor

nodes in a stationary camera network. A distributed version of camera localiza-

tion is proposed by Funiak et al. [18], in which relative positions of cameras are

recovered by tracking a moving object. The sensor placement scheme is presented

for the problem of minimizing the localization uncertainty in [19]. They proposed

a triangulation-based state estimation method using bearing measurements ob-

tained from two sensors. Meingast et al. [20] proposed a multi-target tracking

based camera network localization algorithm. The critical concept applied in [20]

is the use of spatio-temporal features, an approach taken in this dissertation.

Tracks of moving objects are used as spatio-temporal features (tracks are de-

tected by a multi-target tracking algorithm from [21]). In order to find matching
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features over a pair of cameras, detection times of spatial features are used as

well as spatial features such as Harris corners and scale-invariant feature trans-

form (SIFT) keypoints [22]. Then the relative position and orientation between

cameras are computed using multi-view geometry. Since an incorrect matching

between spatio-temporal features is extremely rare compared to spatial features,

the method provided outstanding performance under a wide baseline and varying

lighting conditions.

But the aforementioned methods are designed for stationary camera networks

and are not suitable for dynamic mobile sensor networks. In fact, in mobile sen-

sor networks, we can take the advantage of mobility to improve the efficiency

of localization. For instance, Zhang et al. [23] proposed a method to control the

formation of robots for better localization. They estimated the quality of team

localization depending on the sensing graph and the shape of formation. A multi-

robot localization algorithm based on the particle filter method is presented in

[24]. They proposed a reciprocal sampling method which selects a small number

of particles when performing a localization process. Some authors have considered

cooperative localization of multiple robots using bearing measurements. Giguere

et al. [25] addressed the problem of reconstructing relative positions under the

condition of mutual observations between robots. The constraint was later re-

laxed by adding landmarks in [26]. They used nonlinear observability analysis to

derive the number of landmarks needed for full observability of the system and

an extended information filter was applied to estimate the states of a team of

robots using bearing-only measurements. Ahmad et al. [27] applied a coopera-

tive localization approach to robot soccer games. They modeled the problem as

a least squares minimization and solved the problem using a graph-based opti-

mization method, given static landmarks at known positions. Tully et al. [28]
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used a leap-frog method for a team of three robots performing cooperative local-

ization, which is similar to the proposed method. In [28], two stationary robots

localize the third moving robot from bearing measurements using an extended

Kalman filter. After completing a single move, the role of each robot is switched

and the process is repeated. In their experiments, robots covered a region of size

20m × 30m and showed a localization error of 1.15m for a trajectory of length

approximately 140m. However, the experiments were conducted using an expen-

sive hardware platform including three on-board computers, four stereo cameras,

and a customized ground vehicle with many sensors. Hence, it is unclear if the

approach is suitable for an inexpensive off-the-shelf robotic platform considered

in this dissertation.

Therefore, we propose a coordinated localization algorithm for mobile sensor

networks under GPS denied areas or indoor environments using an inexpensive

off-the-shelf robotic platform. From experiments, we show that the proposed lo-

calization method provides consistently robust location information for low-cost

noisy sensors. By implementing the leap-frog method [28] using the same robotic

platform used in this dissertation, the proposed method achieves a localization

error rate which is more than 15 times better than the leap-frog method for

trajectories with a similar length.

2.2 Path planning in MSNs

Path planning has attracted much attention in the field of robotics due to its

importance. The goal of a path planning algorithm is to find a continuous tra-

jectory of a robot from an initial state to a goal state without colliding with

obstacles while maintaining robot-specific constraints. A popular path planning

algorithm is the rapidly-exploring random tree (RRT) [29] which is a sampling
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based method. It is applied and extended by many researchers under static envi-

ronments [30, 31] and dynamic environments [32, 33].

In contrast to RRT, which solves a single query problem, the probabilistic

roadmap (PRM) [34] is another sampling based path planning algorithm which

is applied to solve multiple query problems. However, since the performance is de-

termined by the number of samples, importance sampling based PRM approaches

have been proposed in order to select more samples near the region of interest

(see [35] and references therein). Recently, cross entropy (CE) [36], a combina-

tion of importance sampling and optimization, has been applied to path planning

problems [37].

However, the aforementioned methods are not suitable for mobile sensor net-

works which requires mobile sensors to be deployed in specific locations since

they do not account for cost which may accumulate in the given environment as

a robot moves. For instance, consider a nuclear power plant accident scenario,

in which some regions are contaminated by radioactive materials. In this sce-

nario, MSNs require robots to be deployed in disaster or hazardous environments

while performing search-and-rescue operation. If a map of radioactive levels is

available, it is desirable for robots to perform the search-and-rescue operation

along the path with the minimum exposure to radioactive materials. Finding

the minimum exposure path becomes a difficult problem if the radioactive map

shows complex terrains of radioactive levels, in addition to obstacles present in

the field. To handle such case a number of improvements have been made and

applied to more complex cost maps in recent years [38, 39, 40, 41, 42, 43]. In

order to increase the quality of a path, the nearest node of the tree to a ran-

dom point is selected by computing the cost along the path when RRT extends

a tree in [38, 41]. Ferguson et al. [39] modified the procedures of RRT such as
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random sampling, node selection for extension, and node extension when gener-

ating RRT trees sequentially to improve the quality of the resulting path. Ettlin

et al. [40] applied RRT to find the paths having low cost in rough terrain. They

computed the cost of trajectories by biasing RRT towards low-cost areas. In [42],

mobile robots are used to estimate environmental parameters of the field and

coordinated towards the location with the most information. However, they did

not consider the information gain along the trajectories of robots. In [43], Jaillet

et al. presented the transition-based RRT (T-RRT) which finds low-cost paths

with respect to a user given configuration space cost map based on a stochastic

optimization method. However, since [43] extends the tree using a finite set of

possible controls, the resulting paths can be suboptimal.

Motivated by this, we propose an efficient cost-aware planing strategy suitable

for mobile sensor networks by considering the given environment, where it has en-

vironmental parameters such as temperature, humidity, chemical concentration,

stealthiness and elevation.

2.3 Informative path planning in MSNs

In recent years, environmental monitoring has become increasingly important due

to factors, such as global warming, ozone layer depletion, deforestation, ocean pol-

lution, natural resource depletion, and population growth, to name a few. A num-

ber of different environmental monitoring areas have been studied extensively,

including marine monitoring [44], ecological monitoring [45], aerial monitoring

[46], and disaster monitoring [47, 48].

In order to monitor a large area, it is important to collect the most useful infor-

mation with available sensing resources. Guestrin et al. [49] proposed a method

for placing static sensors using the entropy while modeling the environmental
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parameter using a Gaussian process. However, it requires a dense deployment of

sensors to avoid sensing holes and static sensors are not suitable for time-varying

processes we often find in nature. To overcome the limitations of static sensors,

mobile sensor networks are introduced to increasing the sensing coverage both in

space and time.

With mobile sensor networks, active sensing is possible by taking advantage of

the mobility of mobile agents. We will call the problem of scheduling the trajectory

of a mobile sensor for collecting the most useful information as an informative

path planning (IPP) problem in this dissertation.

Singh et al. [47] presented an efficient informative planning strategy for max-

imizing the mutual information from a team of robots. In [50], an optimal IPP

algorithm using branch and bound was proposed to maximally reduce the vari-

ance of the field of interest based on exhaustive search. However, aforementioned

methods were applied to discretized search spaces, making it less scalable for large

problems. A sampling based path planning method, a rapidly-exploring random

tree (RRT) [29], has been applied to the IPP problem. Kwak et al. [51] applied

a genetic algorithm to decide which node to extend an RRT tree for informa-

tion gathering. A mobile target tracking controller was developed to maximize

the information gain using a limited number of mobile sensors in [52], where

the tracking accuracy along the path represents the information gain. While the

recently proposed RRT* [53] seems like a good candidate for solving an IIP prob-

lem, Bry et al. [54] has shown that RRT* is not suitable as for solving an IPP

problem with a cost constraint. The two key procedures of RRT*, selecting the

parent of any newly inserted node and rewiring the node and any nodes of an

RRT tree, are performed based on the consumed costs along the path to the

node. However, those procedures in IPP does not work since those procedures
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are affected by not only the information gain at a node of an RRT tree but also

the cost constraint at the node.

Motivated by this fact, Hollinger et al. [55] proposed a rapidly-exploring in-

formation gathering (RIG) algorithm, which combines sampling-based motion

planning with combinatorial optimization. Since it follows the overall structure

of rapidly-exploring random graphs (RRG) [53], it can ensure that the optimal

path will be found as the number of samples approaches infinity. It introduced a

pruning strategy to improve the efficiency by reducing co-located nodes if they

cannot lead to the optimal solution. The pruning strategy requires to know the

upper bound on the possible reachable information gain using the given cost bud-

get for each node. The reachable information gain is used as the upper bound

and it is computed using a branch and bound algorithm [50]. However, while

robots move in a continuous space, the reachable information gain is calculated

by discretizing the state space. Hence, it requires heavy computation to perform

the branch and bound algorithm to compute all reachable information gains for

all nodes in a tree for a complex or large problem.

Therefore, we propose an efficient informative path planning suitable for mobile

sensor networks by modeling a coverage control system consisting of multiple

robots with resource constraints based on the proposed path planning method.
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Robust Indoor Localization

In this chapter, we present a vision-based coordinated localization system suitable

for mobile sensor networks under GPS denied areas or indoor environments using

inexpensive robot platform. We take the advantage of mobile sensor networks.

In order to localize mobile robots, we first partition robots into two groups: sta-

tionary robots and moving robots. We assume each robot carries a camera and

two markers1. The moving robots move within the field of views (FOVs) of sta-

tionary robots. The stationary robots observe the moving robots and record the

positions of markers of moving robots. Based on the trajectories of markers, i.e.,

spatio-temporal features, we localize all the robots using multi-view geometry. Lo-

calization requires recovering relative positions, i.e., translation and orientation.

While the translation between cameras can be recovered only up to a scaling fac-

tor in [20], we can recover the exact translation using the known distance between

markers in the proposed algorithm.

A multi-robot navigation strategy is also developed using the rapidly-exploring

random tree (RRT) [29], which moves a group of robots from one location to

1For robots moving on a flat surface, a single marker with a known height can be used.
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another while maintaining the formation of robots for coordinated localization.

Since the proposed localization algorithm requires a certain configuration of a

robot team for good localization, the RRT algorithm is modified to guarantee

the configuration condition.

We have implemented the proposed algorithm on a mobile robot platform made

from an iRobot Create [56] mobile robot and conducted an extensive set of exper-

iments. From experiments, we have discovered a set of configurations of robots,

from which good localization is possible. We then applied these configurations

in our coordinated multi-robot localization algorithm. Our experimental results

show that the proposed method consistently achieves less than 1 cm of localiza-

tion error for trajectories of length less than 100 cm and a localization error rate

of 0.37% or less for longer trajectories with length between 715 cm and 890 cm,

making it a promising solution for multi-robot localization in GPS denied or

unstructured environments.

In order to compare the performance of the proposed method, we have also im-

plemented the leap-frog method [28] using the same robotic platform used in this

dissertation. From experiments, the leap-frog method gives a localization error

rate of 5.6% for trajectories with the average length of 820.6 cm. The proposed

method achieves a localization error rate which is more than 15 times better than

the leap-frog method for trajectories with a similar length.

3.1 An Overview of Coordinated Multi-Robot Local-

ization

This section gives an overview of the proposed coordinated multi-robot localiza-

tion method. Suppose there are N robots and we index each robot from 1 to
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N . We assume that each robot’s locational configuration is determined by its

position and orientation in the reference coordinate system. Then the goal of the

multi-robot localization problem is to estimate positions and orientations of all

robots over time.

Let Xi(k) = (Pi(k), Ri(k)) be the locational configuration of robot i at time k

with respect to the reference coordinate system, where Pi(k) ∈ Rn and Ri(k) ∈

SO(3) are the position and rotation of robot i at time k, respectively.2 Then the

configuration of a multi-robot system at time k is

X(k) = (X1(k), X2(k), . . . , XN (k)).

The multi-robot localization problem is to estimate X(k) for all k from sensor

data.

Suppose that we have X(k−1) with respect to the reference coordinate system

and computed relative positions, Tij(k), and orientations, Rij(k), for a pair of

robots i and j at time k. Then we can easily compute positions and orientations

of all robots with respect to a single robot of choice. In order to map new positions

of robots in the reference coordinate system, we require that there is at least one

robot i such that Xi(k) = Xi(k − 1). Then taking positions with respect to this

robot, we can recover the positions and orientations of all robots at time k with

respect to the reference coordinate system.

Based on this idea, we develop a coordinated localization algorithm. At each

time instance, we fix robot s and move other robots. Then we compute Tij(k)

and Rij(k) for pairs of robots such that the pose of a robot can be computed

with respect to robot s. Finally, we compute X(k) based on Xq(k− 1). For k+ 1,

we fix another robot r and move remaining robots and continue this process. By

doing so, we can continuously estimate X(k) for all times.

2SO(3) is the special orthogonal group in R3 (the group of 3D rotations).
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Now the remaining issue is how to estimate translations Tij(k) and orientations

Rij(k) for pairs of robots. For this task, we make the following assumptions:

� Each robot carries a camera and markers.

� The internal parameters of cameras are known (e.g., focal lengths, principal

points, and distortion coefficients).

� Each robot communicates with other robots via wireless communication.

� The clocks of all robots are synchronized.

� Either the distance between a pair of markers on a robot is known or the

height of a single marker is known when a robot is moving on a flat surface.

� At least two robots which capture images are stationary.

Figure 3.1 illustrates an overview of our method. Robots carrying markers move

within the FOVs of stationary robots. Each stationary robot captures an image,

detects markers, and localizes positions of markers in its image frame at time k.

The marker positions and image capture times are shared with other stationary

robots. For a pair of stationary robots i and j, we can compute the relative

translation Tij(k) and orientation Rij(k) from a pair of marker trajectories using

multi-view geometry as discussed in Section 3.2. At time k + 1, every stationary

robot except at least one robot moves and repeats the same process. There is

one remaining issue which is that we can only recover the relative positions up to

a scaling factor when only images are used. To recover the absolute translation

value, we need a known length. To resolve this issue, we assume that the markers

on robots are placed at known heights.

Since the minimum number of robots required for the proposed coordinated

localization algorithm is three, we will discuss our method using a mobile sensor
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Figure 3.1: An overview of the proposed coordinated multi-robot localization

algorithm. Robots in a moving group move within the field of view of stationary

robots. Robots in a stationary group track markers of moving robots and exchange

marker positions. The translations and orientations among stationary robots are

computed from collected marker tracks using multi-view geometry. Finally, all

robots are localized with respect to the reference coordinate system based on the

position of at least one fixed robot since last update time.

network of three robots for the ease of exposition in this dissertation. However,

the proposed method can be applied to a multi-robot system with a larger number

of robots. Furthermore, while a single moving robot is used in our discussion and

experiment, the method can be likewise applied to the case with multiple moving

robots using the multi-target tracking method of [20].

3.2 Multi-Robot Localization using Multi-View Ge-

ometry

In this section, we focus on a single step of the coordinated multi-robot localiza-

tion algorithm for localizing stationary robots by tracking a moving robot and
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present how to control the moving robot using visual data from stationary robots.

3.2.1 Planar Homography for Robot Localization

When two cameras view the same 3D scene from different viewpoints, we can

construct the geometric relation between two views using the homography if the

scene is planar. The homography between two views can be expressed as follows:

H = K

(
R+

1

d
TNT

)
K−1, (3.1)

where K ∈ R3×3 is the intrinsic calibration matrix of the camera, R ∈ SO(3) is

the rotation matrix, T ∈ R3 is the translation vector, N is the unit normal vector

of the plane with respect to the first camera frame, and d is a scale factor which

represents the distance from the plane to the optical center of the first camera

[57].

We can recover {R, T,N} up to a scale factor from H using the singular value

decomposition. From this derivation, we obtain two possible solutions [57]. In

this application, corresponding points are located on the plane which is parallel

to the ground and the tilted angle of each camera is fixed, so we can compute the

normal vector of the plane. Among two solutions, we can find a unique solution

since the normal vector which is perpendicular to the plane is available in our

case. As explained in [57], from the singular value decomposition of HTH, we

obtain an orthogonal matrix V ∈ SO (3), such that HTH = V
∑
V T , where

V = [v1, v2, v3]. Let u be a unit-length vector such that N = v2 × u and vT2 u = 0

and v2 is orthogonal to N . Therefore, given v2 and N , we can solve for u. Once

we find u, we can form the new orthonormal basis {v2, u,N} and obtain R and

T as follows:

R = WUT and T = d(H −R)N, (3.2)
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where U = [v2, u,N ] and W = [Hv2, Hu, Ĥv2Hu], and x̂ ∈ R3×3 is a skew-

symmetric matrix. When we reconstruct positions of markers in the 3D space

using data points from the image plane, we can find the exact scale factor using

the distance between markers.

The homography can be computed from a number of pairs of feature corre-

spondences. We use the spatio-temporal correspondence features by tracking a

moving robot in the FOVs of scenes. We first segment a marker on the robot

at each time instance from image sequences of each camera. It is performed by

applying the maximally stable extremal regions (MSER) detector [58], a blob de-

tection method. A centroid of the marker is used to build a marker image track.

Even though the above detection algorithm for extracting marker positions of the

moving robot is robust, it may contain outliers, which do not fit the 2D plane,

such as debris on the ground or measurement errors. In order to robustly estimate

the planar homography, we used the random sampling consensus (RANSAC) al-

gorithm [59].

3.2.2 Image Based Robot Control

The trajectory of a moving robot can influence the quality of localization. Hence,

it is desirable to move a robot such that the localization error can be minimized.

Since a robot has to be controlled using data from cameras, it can be seen as

a visual servo control problem. In visual servo control, namely the image-based

visual servo (IBVS) approach, the control input to the moving robot is computed

based on the error generated in the 2D image space [60]. However, in order to

compute the control input, visual servoing requires the pseudo inverse of an in-

teraction matrix which represents the relationship between the velocity of the

moving robot and the time derivative of the error. Since the interaction matrix
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has six degrees of freedom, such a process requires at least three feature points

at each time. Since we only consider a single marker in the present dissertation,

the visual servoing approach is not applicable and an alternative robot controller

is required.

Robot trajectory design for better localization

We have considered three scenarios in order to identify an ideal robot trajectory

for minimizing the localization error and they are shown in Figure 3.2. The consid-

ered cases are (1) points along the boundary of the common FOV by two cameras

(Figure 3.2(a)), (2) uniformly scattered points inside the FOV (Figure 3.2(b)),

and (3) randomly placed points inside the FOV (Figure 3.2(c)). For each case,

we randomly selected 50 point pairs and performed the proposed localization al-

gorithm. We have repeated the process for 500 times. For each run, we computed

the estimation error εi = |d̂i − dtrue|, for i = 1, 2, . . . , 500, where d̂i is the esti-

mated distance between two robots for the i-th run using our localization method

and dtrue is the ground truth distance. Average localization errors are shown in

Figure 3.3. It can be seen that points along the boundary of the FOV gives the

lowest localization error. The simulation was conducted using MATLAB based

on parameters of cameras used in experiments. A point is projected to the image

plane with an additive zero-mean Gaussian noise with a standard deviation of

one pixel.

Control

From the previous section, we have found that we can lower the localization error

using feature points located at the boundary of the FOV. Based on this finding,

we design an image-based robot controller which makes the moving robot follow
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(a) Boundary points on the plane (top view) and image views.
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(b) Uniform points on the plane (top view) and image views.
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(c) Random points on the plane (top view) and image views.

Figure 3.2: Examples of three scenarios for an ideal trajectory: (a) boundary, (b)

uniform, and (c) random. The left figure shows the top view and the middle and

right figures show two separate camera views.

25



Chapter 3. Robust Indoor Localization

0

0.5

1

1.5

2

2.5

3

3.5

Different cases

Lo
ca

liz
at

io
n 

er
ro

r 
[c

m
]

 

 

Boundary
Grid
Random

Figure 3.3: Average localization errors for three different scenarios considered in

Figure 3.2. The average error is computed from 500 independent runs and the

error bar shows one standard deviation from its mean value.

the boundary of the common FOV of stationary robots. One difficulty is that a

moving robot can move beyond the FOV due to communication delay. In order to

prevent this problem, we first set the boundary within the image frame as shown

in Figure 3.4(a). The common FOV of two cameras on the ground plane is shown

in Figure 3.4(b).

Since the actual heading of a moving robot is not available, it has to be esti-

mated from image data. We estimate the heading direction of the moving robot

using a batch least square filter over a finite window from measurements from

both cameras. When the moving robot is near the boundary of a camera, the cor-

responding stationary robot sends a command to the moving robot to rotate by

a predefined amount for a short duration. The direction of the rotation is deter-

mined by the normal vector of the boundary and the estimated heading direction.

The moving robot combines commands from stationary robots and changes its
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(a) (b)

Figure 3.4: (a) An example of a boundary within an image frame. (b) The common

FOV of two cameras on the ground plane.

heading for a short duration. While this is an extremely simple controller, we

have found it very effective for controlling the robot to move along the boundary

of the FOV since we cannot reliably estimate the position and heading of the

moving robot using a small number of noisy marker detection results.

3.3 Multi-Robot Navigation System

This section details how we implement the multi-robot navigation system includ-

ing the robot platform used in the experiments and a multi-robot navigation

method which moves a group of robots from one location to another while main-

taining the formation of robots for coordinated localization.
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3.3.1 Multi-Robot System

For our experiments, we used iRobot Create wheeled mobile robots [56] as mobile

nodes in our mobile sensor network. The developed mobile platform is shown in

Figure 3.5(a), which is equipped with a PS3 Eye camera, an ASUS notebook

which runs Linux OS, and a white LED which works as a marker. WiFi (IEEE

802.11) is used for communication among robots. Each camera has a resolution of

320× 240 pixels and runs at 40 frames per second (fps). As explained in [61], we

used a one-server, two client model for communication. However, unlike [61], in

this work, stationary robots consistently check the visibility of the moving robot

to prevent the moving robot from going beyond the common FOV as explained in

the previous section. The time synchronization operation is implemented as fol-

lows. Since each robot can have a different local time, all clocks are synchronized

using the clock of the server at each time a stationary robot moves.

(a) (b)

Figure 3.5: (a) An iRobot Create based mobile robot platform. (b) A two-wheeled

differential drive robot.
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We used the two-wheeled differential drive robot dynamics in simulation and

experiments. The parameters of the mobile robot are shown in Figure 3.5(b).

Let l be the distance between the two wheels. Recall that qx and qy denote the

position of a robot with respect to x and y axis, respectively, and qθ denotes its

heading. The dynamics of a two-wheeled differential drive robot can be expressed

as follows, where vr and vl are the right and left wheel velocities, respectively.

qx(t+ ∆t) =
qx(t) + 2v(t)

w(t) sin (w̃(t)) cos (θ(t) + w̃(t)) if w(t) 6= 0

qx(t) + v(t)∆t cos
(
θ(t)

)
otherwise

qy(t+ ∆t) =
qy(t) + 2v(t)

w(t) sin (w̃(t)) sin (θ(t) + w̃(t)) if w(t) 6= 0

qy(t) + v(t)∆t sin
(
θ(t)

)
otherwise

qθ(t+ ∆t) = qθ(t) + w(t)∆t, (3.3)

where w̃(t) = w(t)∆t
2 , v(t) = vr(t)+vl(t)

2 is the translational velocity, and w(t) =

vr(t)−vl(t)
l is the angular velocity [62].

We can not directly specify v and w to reach the specific position, because we

can not compute vr and vl from (3.3). Thus, we consider only two motions by

a robot (going-forward and turning) to reduce the modeling error and simplify

its control. In order to correctly model the physical mobile platform used in the

experiment, we have conducted a number of experiments to measure odometry

errors. For the going-forward motion, we made a robot move forward at four

different distances from 5 cm to 20 cm at a speed of 20 cm/s, 15 times each. The

odometry error is shown in Figure 3.6(a). It is interesting to note that there is
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a bias term, i.e., the going-forward motion shows a bias of 0.8 cm at 20 cm/s.

For the turning motion, we have rotated a robot at different angular velocities

15 times each and the average angular error is shown in Figure 3.6(b). Since

we obtained the similar results for the negative angular velocities, the results

for the negative are not illustrated in this figure. The average angular error and

its variance tend to fluctuate depending on the angular velocity. Especially for

angular velocities less than 2 ◦/s, the variance of the angular error is relatively

large with respect to the magnitude of the velocity (see the inset in Figure 3.6(b)).

But the mean increases as the angular velocity gets bigger, except 10 ◦/s. Based

on the experiments, we have obtained a more precise dynamic model of the mobile

platform using (3.3). When a robot moves forward, its heading does not change,

hence, the dynamics for the going-forward motion is as follows:

qx(t+ ∆t) = qx(t) + v cos(θ(t))∆t+ α1

qy(t+ ∆t) = qy(t) + v sin(θ(t))∆t+ α1

qθ(t+ ∆t) = qθ(t) + α2, (3.4)

since vr = vl and w = 0. The dynamics for turning becomes:

qx(t+ ∆t) = qx(t) + α3

qy(t+ ∆t) = qy(t) + α3

qθ(t+ ∆t) = qθ(t) +

(
2v

l
+ α4

)
∆t, (3.5)

since vr = −vl and v = 0 (i.e., the position of the robot is stationary). Here,

α1, α2, α3, and α4 are random variables representing noises including bias terms

found from the experiments.
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Figure 3.6: Average drift error for different movements. The average drift error

is computed from 15 movements and one standard deviation is shown as an error

bar (3.6(a)-3.6(b)). The inset in (b) is a magnified odometry error (deg) graph

for angular velocity less than 2 ◦/s.
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3.3.2 Multi-Robot Navigation

We now consider moving a group of robots from one location to another lo-

cation while localizing all robots based on the proposed multi-robot localiza-

tion algorithm. We develop a multi-robot navigation algorithm based on the

rapidly-exploring random tree (RRT) [29] which is a sampling-based path plan-

ning method. It quickly searches over a nonconvex configuration space by sam-

pling a random point and incrementally builds a navigation tree by extending the

tree towards the random point. While an RRT can be readily applied to a single

robot, it is not straightforward to apply to a group of robots with constraints. For

our multi-robot localization method, robots must satisfy a requirement about the

configuration of robots, namely the distance between stationary robots and an-

gles between them for better localization (see Section 3.4.1 for more information

about the constraints).

Let Xteam(k) be the locational configuration of two stationary robots, i.e.

Xteam(k) = [XA(k), XB(k), θ(k)], where XA(k) ∈ X and XB(k) ∈ X are lo-

cational configurations of robots A and B, respectively, at time k, and θ(k) is

the angle between two stationary robots, which is graphically illustrated in Fig-

ure 3.7. Recall that Xi(k) consists of the position Pi(k) and the rotation Ri(k).

In order for a team of three robots to correctly localize, the following conditions

must be satisfied.

d1 ≤ ‖PA(k)− PB(k)‖ ≤ d2

θ1 ≤ θ(k) ≤ θ2, (3.6)

where θ(k) is computed using RA(k) and RB(k) and the parameters d1, d2, θ1,

and θ2 are experimentally determined as discussed in Section 3.4 and fixed for

the team. In order for a group of robots move, one of the stationary robots has to
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Figure 3.7: Illustration of the region Xmove(k). Blue and red circle represent initial

positions of robot A and B and blue and red arrow represent the headings of

robots, respectively. Two black arrows with a gray region for each robot represent

the field of view of each robot. The region with green color represents Xmove(k).

move and there is a chance that the condition (3.6) can be violated. For a group

of robots to navigate while localizing, the condition (3.6) has to be satisfied at

all times.

Suppose that robot A is stationary and robot B moves forward. Then the

region satisfying the first condition of (3.6) can be expressed as Xmove(k), the

green region in Figure 3.7. The second condition of (3.6) can be easily satisfied

by rotating robot B with respect to the heading of robot A. Path planning of

a team of robots satisfying the condition (3.6) is implemented using the RRT.
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However, since one robot moves and the other robot is stationary, we have to

alternatively move one robot at a time while satisfying (3.6) at each step. The

procedure is similar to scheduling steps of a humanoid robot to move from one

location to a target location while avoiding obstacles. Results of RRT based path

planning for a robot team are shown in Section 3.4.

3.4 Experimental Results

3.4.1 Coordinated Multi-Robot Localization: Single-Step

We first performed experiments for the single-step of the coordinated multi-robot

localization algorithm in order to find a multi-robot configuration which results

in good localization.

Figure 3.8 shows our experiment setup. We also used the Vicon motion capture

system to collect the ground truth data in order to measure the performance of our

algorithm. We conducted our experiments at four different baselines, d, between

two stationary robots (d = 60, 80, 100, 120 cm). For each baseline, we tested five

different angles, θ, between robots (θ = 0 ◦, 10 ◦, 20 ◦, 30 ◦, 40 ◦). See Figure 3.8(c)

for how d and θ are defined. Hence, there is a total of 20 cases. For each case,

we collected about 250 marker positions of a moving robot and ran 500 times

using RANSAC. Then we localized robots using the proposed algorithm. The

estimation error was computed using the ground truth locations obtained from

the Vicon motion capture system.

Figure 3.9(a)-3.9(d) show the results of all 20 cases. The distribution of local-

ization error is shown as a histogram for each case. The bin size of a histogram

is 0.5 cm and the color of a bin represents the number of runs with localization

errors belonging to the bin. When this number is large, the bin color is red and
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(a) (b)

(c)

Figure 3.8: (a) Photos of the Vicon motion capture system installed in our lab.

The Vicon motion capture system is used for providing the ground truth values.

(b) An image obtained from the Vicon with robots placed on the reference coor-

dinate system. (c) The experimental setup parameters. d is the distance between

two stationary robots and θ is the angle between them.
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(b) Baseline d = 80 cm
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(c) Baseline d = 100 cm
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(d) Baseline d = 120 cm

Figure 3.9: Localization error distributions of 20 cases at different baselines (d =

60, 80, 100, 120 cm) and angles (θ = 0 ◦, 10 ◦, 20 ◦, 30 ◦, 40 ◦) between robots. Each

case has 500 runs. An interval of each bin is 0.5 cm and the color of each bin

represents the number of runs with localization error belonging to the interval.

A white circle represents the mean error of 500 runs.

the bin color is dark blue when this number is low. For instance, when d = 60 and

θ = 0, more than 200 runs resulted in error between 0.5 cm and 1.0 cm. A white

circle represents the mean error from 500 runs for each case. For d = 60 and θ = 0,
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Figure 3.10: Scatter plot of the localization error as a function of the number of

overlapping pixels between two cameras.

the mean error is 0.5 cm. As shown in Figure 3.9(a) and 3.9(b), when the baseline

is 60 cm or 80 cm, the mean error is within 1 cm, except when (d = 80, θ = 0)

and (d = 80, θ = 10). On the other hand, as shown in Figure 3.9(c) and 3.9(d),

the mean errors are relatively high for d = 100 cm and d = 120 cm, especially

at small angles. This is due to the fact that the overlapping area between two

cameras is small for those cases. We plotted the localization error as a function

of the number of overlapping pixels in Figure 3.10. Clearly, the size of the over-

lapping area determines the localization performance and we must account this

when designing a multi-robot localization algorithm. Since the baseline distance

and the angle between robots can be configured in our multi-robot localization

algorithm for the best performance, the experimental results show how we should

configure robots in our coordinated multi-robot localization algorithm as we do

in the next experiment.
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Figure 3.11: Multi-step experiment. The length of each red segment is the distance

from the original position of robot A in step 1 to the new position of the robot

with motion. Dashed lines show the relative poses that are computed at each step

of the algorithm.

3.4.2 Coordinated Multi-Robot Localization: Multi-Step

In this experiment, we localize a group of robots as they move from one place to

another as described in Section 3.3. Based on the previous experiment, we found

that a baseline between 60 cm and 80 cm and an angle between 30 ◦ and 40 ◦ were

ideal and this configuration was used in this multi-step experiment.

Figure 3.11 shows the movements of two robots going forward at different steps

of the algorithm. A marker on Robot C is used for localization but Robot C is not

illustrated in this figure. Because the space covered by the Vicon motion capture

system was limited, we were able to perform six steps of the algorithm. Table 3.1

shows localization errors from the experiments. In the table, “seg” represents the

line segment shown in Figure 3.11, “true” is the length of the segment computed

by Vicon, and “est” is the length computed by our algorithm. At step 1, the

difference between ground truth value and estimation value is 0.02 cm. After step

1, robot A goes forward for about 40 cm and turns to the left and robot B does

not move. Since we know the angle between robot A and B from rotation matrix

38



Chapter 3. Robust Indoor Localization

seg true est seg true est

a-b 77.14 cm 77.12 cm a-b 77.14 cm 77.12 cm

b-c 85.76 cm 85.72 cm a-c 36.22 cm 36.23 cm

c-d 78.29 cm 78.42 cm a-d 85.73 cm 85.21 cm

d-e 88.16 cm 87.82 cm a-e 74.01 cm 73.98 cm

e-f 80.47 cm 80.05 cm a-f 107.82 cm 107.4 cm

f-g 89.82 cm 89.53 cm a-g 109.73 cm 109.36 cm

Table 3.1: Results from the multi-step experiment. (See Figure 3.11 for segment

labels)

R computed in step 1, when robot A rotates, we can maintain the pre-defined

angle θ.

At step 2, the coordinate system with respect to robot B is the reference

coordinate system and the localization error for the segment a−c is only 0.01 cm.

After step 2, robot A is stationed and robot B moves forward for about 40 cm.

Again, we can maintain the pre-defined distance d by computing the position of

robot B in step 2 with respect to the coordinate of robot A in step 1. And this

process is repeated as shown in Figure 3.11. For all steps, the localization error

was kept within 1 cm and the localization error of the longest segment a− g was

only 0.37 cm.

We also conducted the going forward experiments in the hallway to demon-

strate its performance over a long distance (see Figure 3.12). A robot with a

white LED plays the role of the moving group and two robots with a camera

forms the stationary group. Table 3.2 shows localization results from the exper-

iments in the hallway. For trajectories with length from 715 cm to 890 cm, the
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Figure 3.12: Photos from the hallway experiment. A group of robots moves along

the straight line (black dotted line). At each step, a robot with an LED marker

moves while the remaining two robots localize based on the movement of the

robot with LED using the proposed algorithm.

Case Robot True Est. Error Err. Rate

1 A 730 cm 728.1 cm 1.9 cm 0.26%

2 A 732 cm 733.5 cm 1.5 cm 0.20%

3 A 715 cm 716.7 cm 1.7 cm 0.23%

4 A 890 cm 886.7 cm 3.3 cm 0.37%

5 A 857 cm 854.5 cm 2.5 cm 0.29%

Table 3.2: Results from the multi-step experiment in the hallway.
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achieved localization error is between 1.5 cm and 3.3 cm, making the localization

error rate less than 0.37% of the length of the trajectory of the robot. Further-

more, the group of robots can follow the straight line without deviating from the

desired path. See Figure 3.12 for photos from the experiments.

Next, we tested if a group of robots can make turns to avoid obstacles. Fig-

ure 3.13 shows snapshots of a multi-robot system making left and right turns.

We first generated a desired path with right or left turns for the multi-robot

system, satisfying the condition (3.6) in Section 3.3.2. Then a multi-robot sys-

tem follows the given trajectory while localizing all robots. For each turn, four

independent trials were performed and the results are shown in Figure 3.14(a)

and Figure 3.14(b). Figure 3.14(c) shows localization errors of each robot as a

function of time.

Lastly, we show the results from multi-robot navigation. Snapshots from the

experiment are shown in Figure 3.15. Given a path found by the RRT-based

multi-robot navigation algorithm, a multi-robot system moves cooperatively while

performing localization. Figure 3.15(a) shows the planned path of the stationary

robot found by the RRT-based multi-robot path planning algorithm to navigate

to the goal location. Purple and green circles represent the planned positions

of robot A and B, respectively. Blue and red arrows represent their respective

headings. Figure 3.15(b) shows snapshots from the experiment showing the turn

made by the multi-robot system. Black lines are the actual trajectories of robots

following the planned path. Figure 3.16 shows results from obstacle avoidance

experiments using the RRT-based multi-robot navigation algorithm and they are

taken from different overhead cameras. As shown in the figure, robots can safely

navigate to reach the goal location while avoiding obstacles.

Localization under the GPS denied or unstructured indoor environment is a
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Figure 3.14: Estimated locations from turning experiments. Blue and magenta

circles represent estimated positions of robot A and B, respectively. Green and

yellow diamonds represent ground truth positions of robot A and B, respectively.

(a) Left turn. (b) Right turn. (c) Localization errors as a function of time.
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challenging problem. But the experimental results show that our algorithm can

provide a promising solution to this challenging localization problem.

3.5 Discussions and Comparison to Leap-Frog

This section provides a short discussion on some practical aspects of the proposed

localization algorithm and a comparison to the leap-frog method [28].

3.5.1 Discussions

Our experimental results in Section 3.4.2 suggests that precise localization is

possible using an inexpensive robotic platform using camera sensors in an indoor

environment with obstacles. Even if the environment is cluttered with obstacles,

the proposed multi-robot navigation algorithm can find a path for the team of

robots if a feasible path exists, following the probabilistic completeness of RRT

[29].

The proposed coordinated localization algorithm requires regular communica-

tion between moving robots and stationary robots to make sure that the moving

robots are within the field of view of stationary robots. Hence, a poor communi-

cation condition may affect the performance of the system since it will be difficult

to control moving robots reliably. However, since the speed of the moving robot

is known, we can predict when moving robots have to change their headings if

communication delay can be estimated.

In order to match marker tracks, it is required to synchronize times of all robots.

Mismatched timestamps can cause inaccurate localization. We have conducted a

simple experiment to test the sensitivity of the proposed method against the time

synchronization error. Based on collected data which has the time synchronization

error less than 0.005 second, we have introduced time synchronization errors
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(a)

(b)

Figure 3.15: (a) A trajectory found by the proposed multi-robot navigation algo-

rithm. Purple circles and blue arrows represent the planned positions of Robot A

and corresponding headings, respectively. Green circles and red arrows represent

the planned positions of Robot B and corresponding headings, respectively. (b)

Photos from the experiment following the trajectory. Black lines show the actual

trajectories of robots.
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to the dataset. Our experiment shows that the localization error is kept under

1 cm for a time synchronization error of 0.05 second, showing the robustness

of the proposed method against the time synchronization error. However, we

have observed an increase in the localization error when the time synchronization

error is larger than 0.05 second. Hence, it is desirable to keep the maximum

possible time synchronization error under 0.05 second or less. This condition can

be satisfied in most cases. However, a wireless protocol with real-time guarantee,

such as the guaranteed time slot (GTS) of IEEE 802.15.4 [63], can be utilized to

avoid any unexpected time synchronization delays.

3.5.2 Comparison to Leap-Frog

We have also implemented the leap-frog localization method proposed in [28] for

comparison. In its original implementation, the authors used the Learning Applied

to Ground Vehicles (LAGR) platform equipped with three on-board computers,

wheel encoders, and a set of four stereo cameras. However, since it is unclear if the

approach is suitable for an inexpensive off-the-shelf robotic platform considered

in this dissertation, we implemented the leap-frog algorithm using the robotic

platform used in this dissertation, which includes PS3 Eye cameras, a white LED,

and an iRobot Create platform as shown in Figure 3.17(a). A snapshot from

the leap-frog localization experiment is shown in Figure 3.17(b). We placed six

cameras on the robot as shown in Figure 3.18 to emulate an omnidirectional

camera system. Note that a PS3 Eye camera has 75 degree field of view (FOV). An

omnidirectional camera is required for the leap-flog system since measurements

for its extended Kalman filter (EKF) algorithm is relative bearing angles.

In [28], a red ball is placed on each vehicle and a circle Hough transform is used

to detect the position of other vehicle. In our implementation, we used an LED
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(a) (b)

Figure 3.17: (a) A robot platform developed for leap-frog localization [28]. (b) A

photo from the leap-frog localization experiment.

Figure 3.18: The configuration of six directional cameras for emulating an omni-

directional camera. The gray region represents the FOV of each camera placed

on iRobot Create.
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Chapter 3. Robust Indoor Localization

as a marker for this purpose. In order to estimate the bearing angle using our

omnidirectional camera system, we used the following second-order polynomial

equation:

θLED = aq2 + bq + c, (3.7)

where θLED is the relative angle of an LED with respect to the observing robot, q

is the position of a detected LED in the horizontal coordinate, and a, b, and c are

parameters of the polynomial. We collected 30 data pairs for each omnidirectional

camera system and estimated values of a, b, and c based on the ground truth

obtained from Vicon. Using estimated parameters, we found that the mean and

standard deviation of the bearing angle error between the ground truth and the

estimated bearings are 0.380 ◦ and 0.286 ◦, respectively. The error is small enough

and (3.7) is used to estimate the bearing angle.

The key feature of the leap-frog localization is the extended Kalman filter

(EKF) formulation using bearing-only measurements and multi-robot formation

which maximizes the information gain [28]. We acquired the bearing angle by

extracting the position of the LED using the MSER detector. Before applying the

MSER detector, we made a differential image between an image with an LED on

and an image with an LED off, to get rid of noise. We also implemented a leap-

frog formation controller by alternating go-straight and turn motions. After each

movement, we performed the EKF localization using bearing-only measurements

acquired from robots. Since there are blind spots as shown in Figure 3.18, an

additional routine for handling blind spots is required. This is implemented by

adding additional go-straight motions inside the leap-frog algorithm.

We first conducted a simulation to verify the localization performance of the

leap-frog algorithm based on the dynamical model of robots given in Section 3.3.1.

The moving robot follows the leap-frog path by alternating go-straight and turn
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motions. The initial distance between robots is 160 cm and the number of pairs of

movements required to change the role of each robot is five (a movement pair con-

sists of go-straight and turn motions). We added a Gaussian noise with variance

of one to each bearing measurement. The localization result of the simulation is

shown in Figure 3.19. The estimated positions of three robots are shown in red,

green, and blue diamonds, respectively, and the true positions of three robots are

shown in red, green, and blue circles, respectively. Red, green, and blue squares

with black contour represent the goal positions of each robot. We performed a to-

tal of 100 trials. The average localization error of each robot is given in Table 3.3.

We also checked the results when we changed the number of movement pairs. As

shown in Table 3.3, the number of movement pairs does not have an effect on the

results, so we applied five movement pairs in the physical experiment.

The localization results of physical experiments using the leap-frog method

using three robots are shown in Figure 3.20. The localization error of robot 3

for the trajectory with length of 840 cm was 34 cm and the localization error of

robot 1 and robot 2 are 46.3 cm and 58.6 cm, respectively. We can see that the

localization error gets larger as each robot moves a longer distance. Note that

the localization error of the actual experiment is relatively larger than that of

simulation, showing the difficulty of controlling and localizing inexpensive robots.

A comparison of the leap-frog method with the proposed algorithm is summarized

in Table 3.4. The proposed algorithm shows an error rate which is 15 times smaller

than the leap-frog method. The result indicates that the proposed algorithm is

more suitable for inexpensive robotic platforms.
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Figure 3.20: Localization errors from the leap-frog localization experiment.

No. Movement Pairs 5 10 15

Robot1 18.8 cm 17.2 cm 19 cm

Robot2 22.9 cm 21.4 cm 23 cm

Robot3 14.8 cm 14.1 cm 15.4 cm

Table 3.3: Average localization errors for different step sizes (method: leap-frog).

Algorithm Mean Distance Error Error Rate

Leap-frog 826.9 cm 46.3 cm 5.6%

Proposed 715 ∼ 890 cm 1.5 ∼ 3.3 cm 0.20% ∼ 0.37%

Table 3.4: A comparison between the proposed method and the “Leap-Frog”

method.
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3.6 Summary

In this chapter, we have presented a coordinated localization algorithm for mobile

sensor networks. The algorithm is designed to solve the challenging localization

problem under the GPS denied or unstructured indoor environment by taking the

advantage of the multi-agent system and mobility in mobile sensor networks. The

proposed algorithm can solve the multi-robot navigation problem by considering

the configuration constraint of a group of robots. Our experiment shows that

there exists a configuration of robots for good localization and this configuration is

applied to find a trajectory which makes a group of robots move from one location

to another location. We also compared the performance of the proposed algorithm

against the leap-frog method using an inexpensive off-the-shelf robotic platform.

In experiments, the proposed method achieves a localization error of 0.37% or less

for trajectories of length between 715 cm and 890 cm. The experimental results

show that the localization error increases as a robot travels a longer distance. This

propagation of error can be reduced by detecting landmarks in the environment

and this is our future research topic.
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Chapter 4

Preliminaries to Cost-Aware

Path Planning

As explained in Chapter 2, path planning suitable for mobile sensor networks

should consider the environmental field when determining the path by improving

the quality of the path based on the costmap which represents the environmental

parameter. Thus, we assume an availability of a costmap of the field of inter-

est, which represents environmental parameters, such as temperature, humidity,

chemical concentration, wireless signal strength, stealthiness, and terrain eleva-

tion. Our objective is to design a path planning algorithm which guides a robot to

follow a trajectory from the initial location to the destination with the minimal

accumulated cost, along with the terminal cost and travel time.

We propose a cost-aware path planning algorithm for complex configuration

spaces inspired by [64], which addresses the position-dependent path planning

problem (PDPP). In a PDPP problem, the cost is solely dependent on the position

of a robot. The algorithm proposed in [64] constructs an RRT tree by extending

the tree using cross entropy path planning [37], which optimizes the trajectory
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distribution using the stochastic optimization method called cross entropy (CE)

[65]. In this dissertation, we consider a more general problem in which the cost

is a function of the internal state of a robot. We refer this problem as a state

dependent path planning (SDPP) problem.

This chapter first introduces the recent algorithms which considers the quality

of the path and then studies the primary algorithms which form the basis of our

proposed methods.

4.1 Related works

Recently, a number of cost-aware path planning algorithms have been proposed.

Suh and Oh [64] presented a sampling-based path planning algorithm which finds

a low-cost path with respect to a continuous costmap representing the environ-

mental field. For planning a path, they used RRT and extended the search tree

using a stochastic optimization method, called cross entropy (CE) [65]. In [66],

a solar-intensity map is used as a costmap and a path which can charge the

battery the most is found using dynamic programming. Murphy et al. [67] con-

structed a costmap representing traversability using aerial images and performed

path planning using the A* search algorithm with heuristics to find a less riskier

path. Above mentioned algorithms solve instances of PDPP since they consider

an instantaneous cost at each location.

On the other hand, the accumulated cost in SDPP is determined depending

on how a robot has reached the state. An energy efficient planning can be con-

sidered as an instance of SDPP, since the energy consumption at the current

state depends on previous states. There are a number of studies on energy effi-

ciency of motion planning for ground mobile robots [68, 69, 70, 71, 72, 73, 43]

and humanoid robots [74, 75, 76, 77, 78]. In [68, 69, 70], energy-efficient path
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planning algorithms were developed for a 2D plane with no changes in elevation.

They determine the velocity schedule of a moving robot by minimizing energy

consumption given a predetermined path [68] or finding a path using the A*

algorithm [69] or dynamic programming [70]. On the other hand, [71] and [72]

considered terrains with different elevations. Sun et al. [71] examined the energy

consumed by a robot along the path in terms of friction and gravity, but they

did not take into account the optimal velocity profile. In [72], a vehicle velocity

profile was considered to minimize the energy consumption by an electric vehicle

based on dynamic programming. However, they focused on the efficiency of in-

wheel motors to maximize the travel distance on a predetermined road. Kwak et

al. [73] minimized the consumed energy along a path when planning on a rough

terrain based on particle-RRT (pRRT) proposed in [30] which extends a tree by

using particles for estimation of the distribution of states at each node of the

tree under the environment with uncertainty caused by input. They fused the

energy function with the likelihood of successful tree extension in pRRT. Given a

costmap representing the terrain with different elevations, Jaillet et al. [43] found

a low-cost path using RRT but extending the RRT tree based on the Metropolis

criterion.

Unlike the approaches using a ground mobile robot, Michieli et al. [74] per-

formed the energy analysis of a humanoid robotic arm by representing the arm

as a complex energy chain of mechanical and electrical components. Kulk et al.

[75] proposed a low-stiffness walk of a humanoid robot by manually tuning the

parameter on each motor in the robot, through a modification in the low-level

controller. They used the electric current data measured with built-in current sen-

sors to evaluate the performance of their work. The design of an energy-efficient

and human-like gait for a humanoid was presented in [76] and [77], which focused
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on a gait with low energy consumption. Kalakrishnan et al. [78] proposed a mo-

tion planning method based on a cost function which includes torque costs but

without an experimental validation.

Recently, RRT*, which guarantees the asymptotic optimality, and its variants

have been introduced [53, 79, 80, 81, 82]. Given a cost function, RRT* finds the

optimal solution as the number of samples increases to infinity. In [83, 84, 85],

modified RRT and RRT* were applied to manipulation tasks in high dimensional

spaces. However, these algorithms focus on finding the shortest path without

considering the energy consumed by a robot along the path. Hence, they are not

suitable for energy-efficient motion planning.

The approach proposed in this dissertation improves efficiency in a complex

terrain or a high dimensional space while ensuring the asymptotic optimality of

RRT*. It has an anytime flavor in the sense that the proposed algorithm provides

a near optimal solution and monotonically improves its solution towards the

optimal one as more operations are allowed

4.2 Sampling based path planning

In general, the path planning problem is known to be PSPACE-hard problem

in the computational point of view [86, 87] and the computation complexity

increases exponentially as the dimension of the configuration space or the number

of the obstacles increases [88].

In order to overcome such computational burden, many sampling based path

planing approaches have been introduced during the last decades. They only

require a collision detection algorithm without explicit construction of obstacles

in the configuration space and incrementally search the configuration space. Thus,

sampling based algorithms can be very efficient in complex and high dimensional
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space. Although they are not complete, they have the property of the probabilistic

completeness in the sense that the probability that they find a solution, if one

exists, approaches one as the number of samples goes to infinity.

In this section, we introduce several sampling based algorithms which are based

on the proposed methods. Before discussing those algorithms, we first describe

the following common primitive procedures.

� A tree T = (V, E) or a graph G = (V, E) contains a set of vertices V and a

set of edges E .

� Sample(X ) function returns an independent, uniformly distributed sample

from X .

� Nearest Neighbor(T , x) or Nearest Neighbor(G, x) returns a vertex in V

which is closest to x in terms of the Euclidean distance.

� Steer(x, y) procedure returns a configuration z in a ball centered around x

closest to y, i.e. arg miny ‖z−y‖ s.t. ‖x−z‖ < ρ, where ρ > 0 is a predefined

steering parameter.

� Parent(T , x) returns a unique vertex x′ ∈ V such that (x′, x) ∈ E .

� Near(x, r) returns a set of all points in V that are within a ball of radius r

1 centered at x.

� CollisionFree(x, y) checks whether the line connecting two points x and y

is placed in Xfree.

One of the most representative sampling based path planning algorithm is

the rapidly-exploring random tree (RRT) [29] which explores a high dimensional

1The radius is defined as r ≤ γ(log(n)/n)
1
d , where γ is a constant factor ensuring the opti-

mality of the path, n is the number of all nodes in V and d is the state dimension.
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configuration space using random sampling. An outline of RRT is shown in Al-

gorithm 1. Once a starting point and the goal region are defined, the algorithm

iteratively samples a random point xrand over the configuration space and makes

an attempt to expand the search tree T , which is initialized with the starting

point. The xrand is sampled from a uniform distribution over the space but we

can make the distribution biased towards the goal point for faster search of a

path to the goal. The tree T is extended by connecting from xnear, which is the

nearest point of the tree from xrand, to a new point xnew in the direction of xrand,

provided that xnear can be found. xnew is computed by applying a control input

u ∈ U , where U is a set of possible controls, to the vehicle dynamics for a fixed

duration 4t. Once the tree T reaches the goal point, the path can be built by

searching the tree T recursively from the goal point to the starting point.

Algorithm 1 RRT

1: V ← {x0}, E ← ∅, T ← (V, E)

2: while stopping criterion is false do

3: xrand ← Sample(Xfree)

4: xnearest ← Nearest Neighbor(T , xrand)

5: xnew ←Steer(xnearest, xrand)

6: if CollisionFree(xnearest, xnew) then

7: V ← V ∪ {xnew}, E ← E ∪ {(xnearest, xnew)}

8: end if

9: end while

10: return T

Although RRT is known as an efficient approach for complex path planning

problems, it focuses mainly on the feasibility of the path with less consideration

on the cost of the path. So it is not suitable for optimal path planning problem.
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In order to solve the limitation in the optimal point of view, the optimal rapidly

exploring random graph (RRG) and optimal RRT (RRT*) have been proposed

recently considering the importance of the quality of the path in [53].

RRG and RRT*, which are variants of RRT, are outlined in Algorithm 2 and 3,

respectively. They are similar to RRT in that they iteratively explore the configu-

ration space by incrementally increasing a graph or a tree towards xrand through

the connection from xnearest to xnew. However, RRG performs the additional con-

nections to build a graph unlike RRT. Whenever xnew is added to V, connections

between xnew and all vertices included in V which are returned from the function

Near(xnew, r) are added if each connection is valid. RRT* is a sub-graph of RRG

which prunes unnecessary edges contained in RRG which are not included in the

best path found to each node. In order to perform such procedures, two following

procedures are required. First, the parent of xnew is selected among all vertices

in Xnear based on connections from xnear to xnew. The selected parent gives the

least cost from the starting point to xnew through itself. Once the parent is se-

lected, the rewiring procedure is performed. For all vertices in Xnear, if the cost

of the unique path from the starting point to xnear is higher than the cost of the

path to xnear through xnew, then xnear is disconnected from its old parent and

xnew is assigned as the new parent of xnear and connected to xnear. By performing

the above two procedures, RRT* maintains a directed tree structure.

4.3 Cross entropy method

Cross entropy (CE) is an adaptive stochastic optimization method designed to

estimate the probability of rare events [36]. It has been also extended to solve

combinatorial optimization problems, such as the traveling salesman problem [89].
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Algorithm 2 RRG

1: V ← {x0}, E ← ∅,G ← (V, E)

2: while stopping criterion is false do

3: xrand ← Sample(Xfree)

4: xnearest ← Nearest Neighbor(G, xrand)

5: xnew ←Steer(xnearest, xrand)

6: if CollisionFree(xnearest, xnew) then

7: V ← V ∪ {xnew}

8: Xnear ← Near(G, xnew)

9: for xnear ∈ Xnear do

10: if CollisionFree(xnew, xnear) then

11: E ← E ∪ {(xnew, xnear)}

12: end if

13: if CollisionFree(xnear, xnew) then

14: E ← E ∪ {(xnear, xnew)}

15: end if

16: end for

17: end if

18: end while

19: return G

62



Chapter 4. Preliminaries to Cost-Aware Path Planning

Algorithm 3 RRT*

1: V ← {x0}, E ← ∅, T ← (V, E)

2: while stopping criterion is false do

3: xrand ← Sample(Xfree)

4: xnearest ← Nearest Neighbor(T , xrand)

5: xnew ←Steer(xnearest, xrand)

6: if CollisionFree(xnearest, xnew) then

7: V ← V ∪ {xnew}

8: Xnear ← Near(T , xnew)

9: xmin ← xnearest, cmin ← Cost(xnearest) + J (Line(xnearest, xnew))

10: for xnear ∈ Xnear \ {xnearest} do

11: c′ ←Cost(xnear) + J (Line(xnear, xnew))

12: if c′ < cmin AND CollisionFree(xnear, xnew) then

13: xmin ← xnear, cmin ← c′

14: end if

15: end for

16: E ← E ∪ {(xmin, xnew)}

17: for xnear ∈ Xnear \ {xmin} do

18: c′ ← Cost(xnew) + J (Line(xnew, xnear)

19: if c′ < Cost(xnear) AND CollisionFree(xnew, xnear) then

20: E ← E ∪ {(xnew, xnear)}

21: end if

22: end for

23: end if

24: end while

25: return T
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Consider the following optimization problem with a performance function S

min
x∈X

S(x). (4.1)

Let γ∗ be the minimum of (4.1). By defining a family of auxiliary probability

density functions (PDFs) {p(·; θ), θ ∈ Θ} on X , we can transform the determin-

istic problem into a stochastic problem. Then, (4.1) can be formulated as the

following estimation problem:

l(γ) = P(S(X) ≤ γ) = Ep[I{S(X)≤γ}],

where X is a random vector with PDF p(·;φ) for some φ ∈ Θ, γ is a real number,

and I is the indicator function. The expectation is taken with respect to the

distribution p. A simple (and crude) approach to estimate l is to use the following

Monte Carlo method

l̂ =
1

N

N∑
i=1

I{S(Xi)≤γ},

where X1, X2, . . . , XN are samples drawn from p. However, for small γ, the prob-

ability l will be very small and a large number of samples are required to estimate

l accurately. A better approach to estimate l using a smaller number of samples is

the importance sampling method. Suppose that q is an other probability density

function such that if q(x) = 0, then I{S(X)≤γ}p(x) = 0. Then, l can be rewritten

as

l =

∫
I{S(x)≤γ}

p(x)

q(x)
q(x)dx = EqI{S(X)≤γ}

p(X)

q(X)
,

where the expectation is taken with respect to q, which is known as the im-

portance sampling density. Hence, with N independent samples from q, we can

estimate l using

l̂ =
1

N

N∑
i=1

I{S(Xi)≤γ}W (Xi),
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where W (Xi) = p(Xi)/q(Xi) is known as the importance weight. If q can provide

more samples for {S(X) ≤ γ}, then we can estimate l more accurately than the

simple Monte Carlo method.

While the best choice q∗ for q is the density which minimizes the variance of

the estimator l̂, it cannot be computed in practice. Cross entropy attempts to

find q which is closest to q∗ by minimizing the Kullback-Leibler (KL) divergence

between two densities. Suppose that the target distribution is p(·; θ∗) from a

family of distributions, where θ∗ is the true parameter of the distribution p. The

cross entropy algorithm shown below is used to find the optimal parameters θ∗

which minimizes the KL divergence between q∗ and p(·; θ).

1. It generates X1, · · · , XN from p(X; θ̂k−1), where θ̂k−1 = φ when k = 1.

Compute the cost S(Xi) and list them in the order i.e., S(1) ≤ · · · ≤ S(N).

2. Let γ̂k be %-th quantile of S(X), i.e., γ̂k = Sd%Ne, where % is a small number

between 10−2 and 10−1.

3. Compute the parameter θ̂k using the following equation

θ̂k = arg min
θ

1

N

N∑
i=1

I{S(x)≤γ̂k}W (Xi;φ, θk−1)

× ln p(Xi; θ),

where W (x;φ, θ) = p(x, φ)/p(x, θ).

4. Increment k and iterate until p(X; θ̂k) converges to a delta function.

4.3.1 Cross entropy based path planning

In [37], the cross entropy method is applied to path planning, where the optimal

control law with minimum time is sought for. Algorithm 4 shows the cross en-

tropy path planning algorithm which finds a trajectory for a robot from the start
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position xstart to the end position xend. It samples a trajectory X from distribu-

tion p(·; v), where v is a set of controls. The algorithm first generates N random

trajectories X1, . . . , XN from p(X; vi) considering constraints such as obstacles

and vehicle dynamics over the configuration space. If % > 0 is a small number,

the algorithm selects %N elite trajectory samples among all trajectory samples

that have less cost based on the cost function H, which is defined as:

H(X) =

∫ T

0
C(x(t))dt

where C = 1 + β‖x− xend‖2 with a positive constant β and T is the termination

time of the trajectory [37]. Then, it updates the parameter vi (i.e., a set of pairs

of control input and its duration) using the elite set. The algorithm iterates until

the sampling distribution p(X; vi) converges to a delta distribution.

Algorithm 4 Cross Entropy Path Planning

Require: 1. Start position xstart and end position xend

2. Number of trajectory samples N

3. Coefficients % and β

Ensure: Shortest time path from xstart to xend

1: i = 0.

2: Draw N samples X1, . . . , XN from p(X; vi), where p(X; vi) is a uniform dis-

tribution when i = 0.

3: Select %N trajectory samples with lower costs among all trajectory samples

to the cost function H.

4: Update the parameter vi using the elite set.

5: i = i+ 1.

6: Repeat steps 2–5 until p(X; vi) converges to a delta function.
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Chapter 5

Fast Cost-Aware Path

Planning using Stochastic

Optimization

This chapter presents an efficient algorithm for solving the optimal motion plan-

ning problem in a complex configuration space which minimizes the accumulated

cost of the path. The proposed algorithm can be applied to mobile sensor net-

works by considering the environmental field. In this dissertation, the complex

configuration space is represented by the costmap of the field which is computed

based on the environmental parameter using a Gaussian process. The Gaussian

process (or Kriging in geostatistics) is a nonparametric regression method which

has been successfully applied to estimate and predict complex physical phenom-

ena [90].

The proposed method improves upon RRT* by introducing nonmyopic exten-

sions using cross entropy. As explained in section 4.2, the RRT path planning

algorithm, as well as RRT*, iteratively samples a random point xrand over the
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configuration space and makes an attempt to expand a search tree T , which

is initialized with a starting point. The tree T is extended by connecting from

xnearest, which is the nearest point of the tree from xrand, to a new point xnew

in the direction of xrand. When RRT* is applied to a complex environment for

path planning, it incrementally extends its tree from local search. So it requires a

large number of samples to find an optimal solution and the problem gets worse

for complex terrains or higher dimensional problems. We address this problem by

constructing two RRT trees: a standard RRT* tree T and an extended tree Te.

T is used to determine the xnearest of any xrand for better exploration. Te, which

includes T , contains additional longer extensions for nonmyopic search over paths

with less cost. When a new random state xrand is chosen, the proposed algorithm

searches for a path with the minimum cost from xnearest ∈ T to xrand using CE.

The path with the minimum cost is inserted to Te and xnew is selected from the

path. The node xnew is also inserted to T and extra nodes in Te are added to T if

they allow a low-cost path to xnew. By utilizing two separate trees, we can ensure

unbiased exploration over the space using T and, at the same time, improves the

efficiency of search using nonmyopic extensions in Te.

We show that the proposed cost-aware path planning algorithm consistently

finds low-cost paths against RRT [29] and RRT* [53] from a set of extensive

simulations including physics-based simulations using the dynamic model of a

two-wheel robot, Pioneer 3DX, on complex terrains and experiments using a

humanoid robot, Nao, in a high dimensional configuration space.

5.1 Problem formulation

Let Q denote the operation region, in which a robot performs its tasks. Let

X ⊂ Rn be the state space of a robot, where X = Xfree ∪ Xobs and the state
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x ∈ X includes the position q ∈ Q of a robot. Xobs represents the space where

obstacles are placed or the robot may be in collision due to actuator bounds and

Xfree = X \ Xobs is a free space. We assume that the state of the robot x(t) ∈ X

is determined by

ẋ(t) = f(x(t), u(t)), (5.1)

where u(t) ∈ U ⊂ Rp is the control input applied at time t and f is a class C∞

or smooth function.

Let x0 ∈ X be the initial state of the robot and xgoal ⊂ X be the goal region.

Let πu(t) be the trajectory solution to the differential equation (5.1) for given

u(t) from t = 0 to t = T ∈ R+, where T is the termination time. The trajectory

πu(t) can be parameterized by a series of states and control inputs (x(t), u(t))

and it connects the initial state and the goal region such that x(0) = x0 and

x(T ) ∈ xgoal. We assume in this dissertation that the trajectory is deterministic

given the environment and control inputs. Then we want πu(t) ∈ Xfree for all

times. Given the initial state x0 ∈ X and the goal region xgoal ⊂ X , such that

x(0) = x0 and x(T ) ∈ xgoal, and a cost function J , the minimum cost path

planning problem can be expressed as:

arg minu(t):0≤t≤T J
(
πu(t)

)
subject to πu(t) ∈ Xfree for all t ∈ [0, T ]

and πu(T ) ∈ xgoal. (5.2)

The classical path planning problem defines a cost function which only consid-

ers the length of a path, so the optimal solution is focused on how fast a robot

can reach the goal region. However, the cost function for the minimum cost path

planning problem is required to take into account the quality of a path while a

robot is moving along the trajectory. This means the cost function J can depend
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on a costmap C which depends on the position of a robot (i.e., C : Q → R) or an

energy function E which depends on the state of a robot (i.e., E : X → R).

In this dissertation, we consider a cost-aware path planning problem, which is

to solve path planning problem while minimizing the cost along the path based

on the defined cost function.

5.2 Issues with sampling-based path planning for com-

plex terrains or high dimensional spaces

A sampling-based path planning algorithm, such as RRT and PRM, has some

charming properties. First of all, the probabilistic completeness can be guaran-

teed, meaning that the probability that the algorithm finds a solution increases

to one as the number of samples grows to infinity if a solution exists. Such algo-

rithms can also find a solution rapidly for a complex high dimensional space since

they incrementally grow a graph to randomly chosen point until they reach the

goal region. Moreover, the implementation of a sampling-based method is rela-

tively simple. But, both approaches are not suitable for the problem of cost-aware

path planning in a complex terrain or a high dimensional space since they focus

on finding a feasible path to the goal region, which is collision-free. A variant of

RRT, called RRT*, can be a candidate approach for finding a path appropriate

for the mission since it returns a minimum-cost path after an enough number

of iterations due to the asymptotic optimality of RRT*. However, finding the

minimum-cost path in a complex terrain or a high dimensional space can be con-

sidered as an extremely rare event as the dimension of the state space increases,

so it requires an extremely large number of samples to find a good solution.

We demonstrate this using a toy example with a valley shown in Figure 5.1.
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The goal region is located at a slightly lower altitude than the start position. We

assume five angular velocities, ω ∈ {−π
2 ,−

π
4 , 0,

π
4 ,

π
2 }, as a set of possible inputs

with a constant translational velocity at an interval of 5 seconds. The duration of

a trajectory is 60 seconds. The dynamic model and the energy function used in

this example are described in Section 5.5.2. From 512 randomly generated RRT

trajectories, 6,038 trajectories reach the goal region (qrand) and they are shown

as black lines in Figure 5.1. The trajectory in magenta is the trajectory with

the minimum cost among 6,038 trajectories. For a comparison, a path found by

the tree extension step of the proposed algorithm (CAPP) is shown in white.

The required energy for the path from CAPP is 0.3972 J (joule) and the path

from RRT requires 6.9577 J, which is more than 17 times larger than a solution

found by CAPP. When RRT* extends an RRT tree, it selects xnew by steering

towards xrand without considering the cost of the path to xrand so it extends the

tree based on a simple local search. Therefore, RRT* requires an extremely large

number of samples to find the minimum cost path. The running time of RRT*

for finding a trajectory with the same energy cost as CAPP was five times longer

than that of CAPP.

We consider another toy example, in which a humanoid robot lowers one arm

to place its hand at a specific position. Even if the motion is extremely easy,

there is a clear difference in energy consumption depending on how to schedule

the motion trajectory. Since robot arms has multiple joints and each joint rep-

resents a single state, the configuration space has high dimensions. We assume

five joints for one arm and each joint can move within its limited angle range.

When a robot takes an action, the consumed energy is determined according

to the torque on each joint and the change of each joint angle. More detailed

explanation about a humanoid robot and its energy function used in this work
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Figure 5.1: A simple terrain with a valley. Different colors represent different

elevations (see the colorbar). The start position and goal region are marked by

red and yellow squares, respectively. Random trajectories from RRT are shown

in black. The magenta trajectory is the minimum cost path found by RRT and

the white trajectory is a path found by the proposed algorithm.

can be found in Section 3.4. Figure 5.1(a) and 5.1(b) show paths obtained from

RRT* and the proposed algorithm, respectively, with a deadline of 500 seconds.

The red thick lines shown in the snapshots represent the trajectory of an end

effector. Since the torque on a single joint of the arm is affected by other joints

of the arm, the consumed energy is highly dependent on the state of other joints.

That is, there exist certain configurations of the arm which minimize the torque.

Therefore, the robot should move while maintaining configurations with low en-

ergy consumption. The trajectory obtained from RRT* tends to go straight to

the goal region while moving multiple joints simultaneously. On the other hand,

the proposed algorithm finds a trajectory which moves each joint of the arm in a
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more energy-efficient manner. It first lowers the arm by moving the shoulder pitch

angle without changing the shoulder roll angle. When the pitch angle becomes

zero, i.e., the direction of the arm becomes orthogonal to the body, it moves the

shoulder roll joint since this configuration requires less torque on the shoulder roll

joint. After moving the shoulder roll joint, the pitch joint moves again to the goal

state. The robot following the trajectory obtained from RRT* consumes 420.86 J

while the proposed algorithm provides a trajectory requiring only 296.61 J. Since

RRT* requires dense sampling in order to find the optimal solution due to its my-

opic nature, it is computationally intractable in a high dimensional space. Hence,

as demonstrated in this example, for solving an energy-efficient path planning

problem in high dimensional spaces, we need an efficient nonmyopic approach.

5.3 Cost-Aware path planning (CAPP)

We now describe the proposed cost-aware path planning algorithm that generates

a trajectory to minimize the accumulated cost along its path. The key idea is to

sample from the configuration space and to grow a search tree (or RRT tree) by

extending the tree using stochastic optimization. Unlike existing sampling based

motion planning algorithms, in which the RRT tree is extended towards the ran-

dom point based on the distance only, the proposed algorithm finds a path towards

the random point with minimal cost in a nonmyopic manner. The proposed al-

gorithm is based on RRT*, which guarantees the probabilistic completeness and

the asymptotic optimality, and cross entropy to find cost-efficient controls from a

parameterized continuous input space. Thus, the proposed algorithm is referred

as cost-aware RRT* (CARRT*) in this dissertation.

The overall structure of CARRT* is given in Algorithm 5. The primitive proce-

dures described in 4.2 are shared by CARRT*. Unlike RRT*, a specifically tailored
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extension procedure is added to CARRT*. The algorithm constructs two RRT

trees: a standard RRT tree T := (V, E) and an extended tree Te := (Ve, Ee). The

standard tree T is used to determine the nearest point to a random point xrand

(line 5) for better exploration. The extended tree Te includes T , such that V ⊂ Ve

and E ⊂ Ee. Te contains additional branches with, which are not present in T ,

and CARRT* uses Te for finding low-cost long paths. The function CE Extend

described below is used for growing Te.

When performing an extension, if the distance between xnearest and xrand is

larger than a threshold η > 0, i.e. ‖xnearest − xrand‖ > η, CE Extend function

finds a cost-aware path P∗ from xnearest towards xrand using CE path planning

(line 7), where η > ρ. A set of elite states, XCE , is extracted from P∗ based on

the extension unit length ρ (line 8). Note that if we add all points in XCE to T ,

the tree will be biased towards xrand, resulting poor exploration over the state

space. This is the reason why CARRT* constructs two separate trees to tradeoff

exploration and exploitation. The first point xce1 of XCE is used to plan both

trees as xnew in function Plan DoubleTrees (lines 9–10). All other points in XCE

are inserted only to Te using Plan SingleTree with rewiring (lines 11–13). When

the distance between xnearest and xrand is smaller than η, the standard steering

function of RRT* is applied (line 15). Since CE Extend is not effective when

xnear is close to xrand, the parameter η is introduced.

The function Plan DoubleTrees, detailed in Algorithm 6, updates T and Te

using the newly selected xnew and it is illustrated in Figure 5.3. Solid circles

and thick lines represent vertices and edges of T , respectively. Hollow circles and

dash lines represent vertices and edges of Te, respectively. In line 2 of Algorithm 6,

nodes in Te, except children of xnew, which are close to xnew are returned as Xnear

using Near (Figure 5.3(b)). Xnear are within a ball of radius r = γRRT∗
( log(n)

n

) 1
d
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Algorithm 5 Cost-Aware RRT*

1: V ← {x0}, E ← ∅, T ← (V, E)

2: Ve ← {x0}, Ee ← ∅, Te ← (Ve, Ee)

3: while stopping criterion is false do

4: xrand ← Sample(Xfree)

5: xnearest ← Nearest Neighbor(T , xrand)

6: if ‖xnearest, xrand‖ > η then

7: P∗ ← CE Extend(xnearest, xrand)

8: XCE ← Fragment(P∗, ρ)

9: xnew ← xce1 ∈ XCE

10: [T , Te]← Plan DoubleTrees(T , Te, xnearest, xnew)

11: for {xcei}i=2,··· ,n ∈ XCE do

12: Te ←Plan SingleTree(Te, xcei−1 , xcei)

13: end for

14: else

15: xnew ←Steer(xnearest, xrand)

16: if CollisionFree(xnearest, xnew) then

17: [T , Te]← Plan DoubleTrees(T , Te, xnearest, xnew)

18: end if

19: end if

20: end while

21: return T , Te
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centered at xnew as explained in [53], where n is the number of vertices in Te. In

line 3, the best parent node xmin of xnew is found based on the cost to xnew via

xmin from Choose Parent (Figure 5.3(c)). Here, Cost(x) calculates the cost of

the minimum-cost path from x0 to x. If xmin is not included in T , Update Tree

function (Algorithm 9) is called to insert all ancestor nodes of xmin from Te to T

(Figure 5.3(d)). By including nodes in Te through Update Tree, CARRT* gains

more chances for extending the tree in a nonmyopic manner. Lines 10–23 are

for rewiring. If the rewiring condition (line 11) is satisfied for xnear, the parent

of xnear is shifted to xnew like RRT*. However, CARRT* checks whether xnear

is included in T for xnew. If it is not in T , the node xnear and a new edge

(xnew, xnear) are added to T (lines 13–14). On the other hand, if xnear ∈ T , the

rewiring procedure is the same as RRT* (lines 16–18). For xnew, Te is updated

by deleting an edge from the parent of xnear to xnear (line 20) and including an

edge (xnew, xnear) (line 21). This rewiring case is shown in Figure 5.3(f). The

stopping criterion of CARRT* can be the number of iterations after reaching the

goal region xgoal, the maximum number of iterations, or a time deadline.

A critical function of CARRT*, CE Extend, is described below.

5.3.1 CE Extend

The objective of CE Extend is to help extending a tree from xnearest with a low-

cost path to xrand. A low-cost path is found using cross entropy path planning

described in Section 4.3.1. We propose two different approaches to generate a

path to xrand and they are:

1. Motion primitives: {(u1, t1), · · · , (um, tm)}, where control input uj ∈ U is

applied over time duration of tj for j ∈ {1, . . . ,m}.

2. Waypoint primitives: {(x1, · · · , xm)}, where xj ∈ Xfree for j ∈ {1, . . . ,m}.
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Algorithm 6 Plan DoubleTrees(T , Te, xnearest, xnew)

1: V ← V ∪ {xnew},Ve ← Ve ∪ {xnew}

2: Xnear ← Near(Te, xnew)

3: xmin ←Choose Parent(Xnear, xnearest, xnew)

4: if xmin /∈ V then

5: T ←Update Tree(T , Te, xmin)

6: else

7: E ← E ∪ {(xmin, xnew)}

8: end if

9: Ee ← Ee ∪ {(xmin, xnew)}

10: for xnear ∈ Xnear \ {xmin} do

11: c′ ← Cost(xnew) + J (Line(xnew, xnear)

12: if c′ < Cost(xnear) AND CollisionFree(xnew, xnear) then

13: if xnear /∈ V then

14: V ← V ∪ {xnear}

15: E ← E ∪ {(xnew, xnear)}

16: else

17: xparent ← Parent(T , xnear)

18: E ← E \ {(xparent, xnear)}

19: E ← E ∪ {(xnew, xnear)}

20: end if

21: Ee ← Ee \ {(Parent(Te, xnear), xnear)}

22: Ee ← Ee ∪ {(xnew, xnear)}

23: end if

24: end for

25: return T , Te
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Algorithm 7 Plan SingleTree(Te, xnearest, xnew)

1: Ve ← Ve ∪ {xnew}

2: Xnear ← Near(Te, xnew)

3: xmin ←Choose Parent(Xnear, xnearest, xnew)

4: Ee ← Ee ∪ {(xmin, xnew)}

5: for xnear ∈ Xnear \ {xmin} do

6: c′ ←Cost(xnew) + J (Line(xnew, xnear)

7: if c′ < Cost(xnear) AND CollisionFree(xnew, xnear) then

8: Ee ← Ee \ {(Parent(Te, xnear), xnear)}

9: Ee ← Ee ∪ {(xnew, xnear)}

10: end if

11: end for

12: return Te

Algorithm 8 Choose Parent(Xnear, xnearest, xnew)

1: xmin ← xnearest

2: cmin ← Cost(xnearest) + J (Line(xnearest, xnew))

3: for xnear ∈ Xnear \ {xnearest} do

4: c′ ←Cost(xnear) + J (Line(xnear, xnew))

5: if c′ < cmin AND CollisionFree(xnear, xnew) then

6: xmin ← xnear, cmin ← c′

7: end if

8: end for

9: return xmin
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: An illustration of Algorithm 6. The tree T is represented by solid

circles and thick lines while the extended tree Te is represented by solid circles

and thick lines with additional branches represented by hollow circles and dash

lines. (a) xnearest is selected from T for xrand. (b)Xnear of xnew are chosen from Te.

(c) Among Xnear, the node with the minimum cost is selected as xmin. (d) Once

xmin is determined from Te, the ancestor nodes of xmin are added to T through

Update Tree. (e,f) For xnear, the rewiring procedure is performed by deleting the

edge from the parent of xnear to xnear and inserting an edge (xnew, xnear) to Te

if xnear is not included in T .
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Algorithm 9 Update Tree(T , Te, xmin)

1: x′ ← xmin

2: while x′ /∈ V do

3: x′′ ← Parent(Te, x′)

4: V ← V ∪ {x′}, E ← E ∪ {(x′′, x′)}

5: x′ ← x′′

6: end while

7: return T

The motion or the waypoint primitives are sampled from p(·; v), where p(·; v) =

N (·|µ,Σ) and v = (µ,Σ). The Gaussian distribution is used for the ease of com-

putation but other distribution from a natural exponential family can be eas-

ily applied [91]. The basic idea behind cross entropy is to optimize v using the

Kullback-Leibler divergence, such that the resulting p(·; v) is biased towards the

optimal parameter distribution. In our case, we want p(·; v) to become a delta

function and represent a minimum cost path.

Motion Primitives

The initial value v0 = (µ0,Σ0) of v is set by selecting µ0 and Σ0 such that the

motion primitive causes the shortest path from xnear to xrand and each control is

applied at an equal time interval. At the k-th iteration, we generate Nt trajectory

samples P1, · · · ,PNt using motion primitives sampled from p(·; vk−1). In order to

find a path to reach a region near xrand while having the minimal accumulated

cost as stated in the path planning problem (5.2), we define two parameters ηa > 0

and ηb > 0. We first select at most ηaNt trajectories whose terminal positions are

close to the goal region and then select at most ηbNt elite trajectories with the

lowest costs. After these two layers of filtering, we update vk = {µmpj ,Σmp
j }mj=1
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from the selected elite samples πel = {πi}ηbNt

i=1 , where

µmpj =
1

ηbNt

[ ηbNt∑
l=1

ulj ,

ηbNt∑
l=1

tlj

]T

Σmp
j =

1

ηbNt

ηbNt∑
l=1

(
[ulj , tlj ]

T − µmpj
)(

[ulj , tlj ]
T − µmpj

)T
,

(5.3)

where (ulj , tlj) is the j-th motion primitive parameterized by the l-th elite sample.

In order to guarantee that the update procedure always reduces the cost, we

remember the best sample in the previous step and reuse the sample in the

current update procedure if it has a lower cost than current elite samples. With

these two layers of filtering, we can find a solution to (5.2) which always arrives at

the goal region. The maximum number of iterations in the CE Extend function

is fixed to Niter in our algorithm. After iterations, the minimum cost path P∗

from xnear to xrand is selected. In our implementation, a discretized version of

the optimal path planning problem is used as described in [64].

Waypoint primitives

The initial value v0 of v is set such that a direct path from xnearest to xrand

is equally covered by each Gaussian component of v0. At the k-th iteration, we

sample Nt waypoints {Xi}Nt
i=1 from p(·; vk−1), where Xi = {xij}mj=1. Assuming

that there exists the parameterization function g(·) which gives the trajectory

P(t) and control input u(t) given two waypoints x1 and x2, i.e., ((P(t), u(t)) =

g(x1, x2)), then for each Xi, we can construct a path Pi from xnear to xrand by

connecting xnear to xi1, xij to xi(j+1) for all j, and xim to xrand using the function

g. In order to connect between two waypoints, we used Dubins’ curves [92] as a

solution of the boundary condition problem. Dubins’ curve can be characterized

by six curves such as {LSL,RSR,LSR,RSL,RLR,LRL} and each curve consists

of three path segments such as turning right (R), turning left (L), and straight
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line(S). For six curves, we derived the equations which represents the length of

each path. Each solution for six length equations is formulated in Appendix E.

For the case of complex space with multiple obstacles, it is difficult to set the

initial value v0 since the connection from xij to xi(j+1) cannot be found easily

due to obstacles. In such a case, a path obtained from RRT is used as v0. For

each Pi, we compute the accumulated cost along the path. Unlike the path using

motion primitives, all paths can reach xrand, so we use a single-layer filtering

without considering the terminal cost. We select ηbNt elite samples with the

lowest accumulated costs. From the selected elite samples Xel = {Xi}ηbNt

i=1 , we

update vk = {µwpj ,Σwp
j }mj=1, where

µwpj =
1

ηbNt

ηbNt∑
l=1

xlj

Σwp
j =

1

ηbNt

ηbNt∑
l=1

(xlj − µwpj )(xlj − µwpj )T .

(5.4)

5.4 Analysis of CAPP

In this section, the properties of the proposed algorithm are evaluated. We first

describe and prove the probabilistic completeness of CARRT*. Then we analyze

the optimality of CARRT*.

5.4.1 Probabilistic Completeness

As shown in [29], RRT is probabilistically complete and has an exponentially fast

convergence rate for the probability of finding a solution if one exists as more

vertices are added to the RRT tree. Furthermore, it is shown that its variants such

as RRT* and the rapidly-exploring random graph (RRG) are also probabilistically

complete [53]. Based on the analysis of those works, we extend the proof of the
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probabilistic completeness of CARRT*. For the proof, we first need the following

terms from [93].

Definition 1. (Local controllability). A robot is defined to be local controllable if

and only if, ∀x ∈ Xfree, the set of configurations that the robot can reach within

a finite time contains a ball centred at x.

In this work, we assume that a robot with holonomic dynamics is locally con-

trollable as explained in the Definition 1. We denote the closed ball of radius ε

centered at configuration x by Bε(x) and the set of all such balls by Bε.

Definition 2. (ε-reachable set). Let ε > 0 and x ∈ X be given. The ε-reachable

set of x, denoted by Rε(x), is defined by

Rε(x) = {x′ ∈ Bε(x)| A path π from x to x′ is entirely

contained in Bε(x)}.

Definition 3. (ε-free feasible path). A path π is said to be ε-free feasible, if the

minimal distance between π and the obstacle region is ε, i.e., for all x ∈ π,

Bε(x) ⊂ Xfree.

In terms of the notation used in this dissertation, the notion of probabilistic

completeness can be stated as follows.

Definition 4. (Probabilistic completeness). Suppose that there exists an ε-free

feasible path from the starting point to the goal region. Then a sampling based

motion planning algorithm is probabilistically complete if the probability that the

algorithm finds an ε-free feasible path from the starting point to the goal region

approaches one as the number of samples goes to infinity.
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Unlike RRT and its variants, such as RRG and RRT*, which select a discrete

input from a finite set of inputs, CARRT* selects a random input from a con-

tinuous input space for tree extension. Therefore, we first show that even if RRT

selects an input from a continuous input space, it has the probabilistic complete-

ness property and then show that the proposed algorithm is probabilistically

complete.

Theorem 1. An RRT, which selects an input from a bounded continuous input

set for tree extension, is probabilistically complete.

Proof. See Appendix A.

Theorem 2. CARRT* is probabilistically complete.

Proof. See Appendix B.

5.4.2 Asymptotic optimality

In this section, we show that a path found by CARRT* converges to the optimal

solution with probability one. Depending on the distance between xnearest and

xrand, CARRT* adopts two extension procedures: one is a long extension using

CE Extend when ‖xnearest − xrand‖ > η and the other is a standard extension

based on Steer. Considering the asymptotic optimality of RRT* [53], we prove

the asymptotic optimality of CARRT* by showing the asymptotic optimality for

the case when a tree is extended using long extensions. Let c∗ = c(π∗) be the cost

of an optimal path, and cn be the cost of the minimum-cost solution returned by

CARRT* at the end of the n-th iteration. We denotes ζd the volume of a unit

ball in the d-dimensional space.

Theorem 3. If γRRT ∗ > (2(1 + 1
d))

1
d (
V ol(Xfree)

ζd
)
1
d , then CARRT* algorithm is

asymptotically optimal, that is, P({limn→∞ cn = c∗}) = 1.
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Proof. See Appendix C.

5.5 Simulation and experimental results

In this section, we discuss results obtained from the proposed algorithm in sim-

ulation and experiments. The following planning problems are considered:

(P1) To find a trajectory which minimizes the accumulated position-dependent

cost when a robot traverses over a field with environmental parameters;

(P2) To find a trajectory which minimizes the consumed energy when a robot

traverses over a complex terrain; and

(P3) Motion planning for humanoid robots in a high dimensional space.

(P1) is an instance of PDPP while (P2) and (P3) are instances of SDPP. In

order to evaluate the performance of the proposed algorithm, we compared the

proposed method against the standard RRT [29], RRT* [53]1, and cross entropy

path planning algorithms, SCERRT* and TCERRT*, from [79]. SCERRT* and

TCERRT* are RRT* based path planning algorithms using cross entropy. While

SCERRT* samples a random point from the state space, TCERRT* samples

from a parameterized trajectory space [79]. Cross entropy based path planning

algorithms including the proposed algorithm require several user defined param-

eters and they are set as follows: Nt = 100, Niter = 50, ηa = 0.2, ηb = 0.1,m = 8.

Additional parameters for SCERRT* and TCERRT* are set to the same values

used in [79]. The proposed method has two versions depending on the method

used to generate a path in CE Extend and they will be referred as CARRT*(M)

1While there are a number of extensions to RRT*, including [80, 81, 82, 84, 85, 94], Some

of them are focused on minimizing the path length. In addition, there is no publicly available

implementation of their work for fair comparison, hence, we only compared to RRT and RRT*.
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and CARRT*(W). CARRT*(M) uses motion primities (see Section 5.3.1) while

CARRT*(W) uses waypoint primitives (see Section 5.3.1). For (P1) and (P3),

only CARRT*(W) is applied since a simple dynamics model is assumed in both

problems.

All simulations were run on a desktop with a 3.4 GHz Intel Core i7 processor

with 16 GB of memory. The proposed method was implemented both in MATLAB

and C/C++2. For problems (P1) and (P2), all algorithms were implemented in

MATLAB. For (P3), the C/C++ implementation of the proposed method was

compared to the C implementation of RRT* provided by the authors of [53]3.

5.5.1 (P1) Cost-Aware Navigation in 2D

Consider a surveillance region Q = [−15, 15]2 in which a robot operates. Q con-

sists of a free space, Qfree, and a collection of obstacles, Qobs. A simple linear

motion model is assumed for the robot dynamics.

Position Dependent Cost Function

As a robot moves from one location to another, the robot is penalized by an

instantaneous cost at its current location. The cost of the entire region Q can

be represented as a costmap C : Q → R+. Given a costmap, we can formulate a

position-dependent cost function JPDPP as follows:

JPDPP

(
πu(t)

)
=

(
1

T

∫ T

0
C(Pu(t))dt+ ε

∫ T

0
dt

)
, (5.5)

where Pu(t) ⊂ πu(t) is a path considering only the positions of πu(t), such that

Pu(t) ∈ Q. The line integral of C along the path of a robot is the total accumulated

2The algorithm will be available at http://cpslab.snu.ac.kr/software
3http://sertac.scripts.mit.edu/web/Software.
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cost until the robot arrives at the goal region. The last term with ε > 0 is intro-

duced to favor a shorter trajectory for trajectories with the same accumulated

cost.

Costmap

We assume that a costmap is defined over Q, representing environmental param-

eters. Since we cannot measure the environmental parameter at every location,

we use a nonparametric regression method, namely Gaussian Process Regression

(GPR), to predict the environmental parameter at a site where no measurement

is made. GPR has been widely used as a nonparametric regression technique

for modeling complex physical phenomena, including nonstationary geostatistical

data analysis [95], nonlinear regression [96], wireless signal strength estimation

[97], indoor temperature field modeling [98], and terrain mapping [99]. Com-

pared to parametric regression methods, nonparametric regression methods are

more expressive and yield better generalizability. Hence, methods such as Gaus-

sian processes are well suited to model complex environments. We assume that

the environmental parameter of interest, which defines the costmap C, follows

a Gaussian process. Suppose we have made n samples from the surveillance re-

gion Q. Let q = {q(1), q(2), . . . , q(n)} be the set of locations at which samples

are taken and y(1), y(2), . . . , y(n) be the measurements. If C(q) is a GP, it can

be fully described by its mean function µ(q) = E(C(q)) and covariance function

K(q, q′) = E((C(q)− µ(q))(C(q′)− µ(q′))), i.e.,

C(q) ∼ GP (µ(q),K(q, q′)). (5.6)

Let Y = [y(1)y(2) · · · y(n)]T . Then, for any q∗ ∈ Q, the expected value of the cost

function at q∗ is

C(q∗) = KT
∗ (K + σ2

wI)−1Y, (5.7)
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where K = [Kij ] is the kernel matrix such that Kij = k(Xi, Xj), K∗ =

[k(x1, x∗) · · · k(xn, x∗)]
T [90].

In this dissertation, we used the squared exponential as a kernel function,

k(X,X ′) = σ2
f exp

(
− 1

2σ2
l

n∑
m=1

(Xm −X ′m)

)
, (5.8)

where σf and σl are hyperparameters of the kernel.

The resulting costmap is defined over the continuous space and this is different

from previous approaches where a cost function is defined over a discretized space.

If cost values are known at discrete sites, the same method can be applied to

smooth the costmap. Hence, by applying GPR, we obtain a costmap of infinite

resolution. Note that the appropriate parameters for the kernel function and the

variance of the observation model have to be learned from the data samples before

the costmap is applied.

Evaluation

We generated four scenarios with different costmaps from a Gaussian process

given in (5.6) with kernel function (5.8), where σ2
f = 1.0 and σ2

l = 5.0. Scenarios

are indexed from S1 to S4. We used the Gaussian process MATLAB toolbox

[90] for modeling the costmap. To consider obstacles, we added several obstacles

placed at the same locations in all scenarios. The starting position x0 and the goal

region xgoal are randomly chosen for each scenario. Two examples of scenarios

used in simulation are shown in Figure 5.4. The left figures in Figure 5.4(a) are

scenarios without obstacles and the right figures are with obstacles. The costmap

is shown as contours with different colors. The high cost region is represented in

white and the low cost region is represented in black. The white squares represent

x0 and xgoal and they are marked by letter S and G, respectively. The obstacle

region is represented by red rectangles.
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For all scenarios, we performed a total of 10 simulations of each algorithm using

different pre-specified random seeds and set the time deadline to terminate the

algorithm after 3000 seconds. We first compared different algorithms for scenarios

without obstacles. The left figures in Figure 5.4 show costmaps and the trajectory

with the minimum cost found by the proposed algorithm over the costmap. Fig-

ure 5.5 shows the average trajectory cost found by each algorithm as a function

of the running time for 10 trials for each scnerio. Since the cost of RRT was too

high, so it is not included in Figure 5.5. The proposed algorithm shows excellent

performance in all cases compared to other algorithms.

We also performed the same simulation but with obstacles. The trajectory with

the minimum cost found by the proposed algorithm is shown in the right figures

of Figure 5.4. The average trajectory costs from different algorithms are shown in

Figure 5.6. For all cases, the proposed algorithm converges to the optimal solution

faster than other algorithms. For all simulations, the proposed algorithm finds a

trajectory with less cost in the beginning compared to other algorithms, thanks

to longer extensions for nonmyopic search used in the proposed method. Note

that the difference between CARRT* and RRT* is not large in all simulations

since relatively simpler cases are considered.

5.5.2 (P2) Complex Terrain Navigation

In order to model a terrain with different elevations, we make a digital terrain

model (DTM) or a height map using pairs of location and elevation values. We

can display the terrain using the Gazebo simulator [100] based on the DTM.
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(a) S1

(b) S4

Figure 5.4: Examples of scenarios used in simulation and the optimal trajectory

with the minimum cost found by the proposed algorithm. The color over the field

represent the costmap. The darker color represents low cost and the bright color

represents high cost. Red rectangles are obstacles.
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Figure 5.5: The average trajectory cost as a function of deadlines for each scenario

(without obstacles). The average cost of each algorithm is computed from 10

independent trials. Legend: RRT* (red), SCERRT* (green), TCERRT* (blue),

and CARRT* (magenta).

Figure 5.6: The average trajectory cost as a function of deadlines for each sce-

nario (with obstacles). The average cost of each algorithm is computed from 10

independent trials. Legend: RRT* (red), SCERRT* (green), TCERRT* (blue),

and CARRT* (magenta).
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Dynamic Model

For this problem, we use a dynamical model of a two-wheeled robot (Dubins’

car). However, the proposed method can be applied to other dynamic models

with suitable energy functions. Let (qx, qy) be the position of a robot and θ be

its heading. Suppose v(t) is the translational velocity and u(t) is the angular

velocity, then the whole dynamics is as follows:

q̇x(t) = v(t) cos(θ(t)), q̇y(t) = v(t) sin(θ(t)), θ̇(t) = u(t).

In simulation, v is fixed at a constant value of 1m/s. A discrete-time version of

the above dynamical model is used in simulation where the sampling period is

set to 0.1 s.

State Dependent Cost Function

Unlike the position dependent cost function used in (P1), we consider a state

dependent cost function, JSDPP, which depends on the energy function E : X →

R+. In order to measure the energy consumption by a robot along its path, we

use the mechanical work (MW) criterion [43]. The MW criterion evaluates the

quality of a path by regarding a nonnegative increment as a penalized cost. In

other words, it is assumed that there is no cost loss for the negative slope of

the time derivative of the energy function [43]. Using MW, we can define a cost

function as follows:

JSDPP(πu(t)) =

∫ T

0
I{

∂E
∂t
>0

}∂E(πu(t))

∂t
dt+ ε

∫ T

0
dt

 , (5.9)

where I{·} is the indicator function. Hence, the cost is penalized when the time

derivative of the energy function has a positive slope along the path of a robot
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and the cost function J captures the penalized cost from t = 0 to t = T . The

last term with ε plays the same role as the last term in (5.5).

Consider a costmap represents terrain elevation. Then accumulated cost de-

pends on the consumed energy along the path. Figure 5.7 shows a simple terrain

with different elevations and paths found by PDPP and SDPP. There is a valley

between the start position (red square) and the goal region (yellow square). The

goal region is located at a slightly higher altitude than the start position. Since

the cost function in PDPP considers the instantaneous cost at each location, it

passes through the lowest altitude region. On the other hand, SDPP avoids the

valley As shown in Figure 5.7(b) and 5.7(c), PDPP spends no energy until time ta

but spends more energy than SDPP to reach the goal region in terms of energy

consumption. While the path is longer, SDPP produces a path which requires

lower energy than PDPP. This example illustrates that when the energy con-

sumption has to be minimized, the algorithm must be able to avoid local valleys

and hills in the terrain.

Energy Function

Since we aim to minimize the energy consumption of a robot traversing a complex

terrain, we can use the energy function E : X → R along the trajectory of

the robot. Given the energy function E, the total energy consumption can be

computed by integrating ∂E/∂t along the path of the robot as shown in (5.9).

The energy at state x can be defined as follows:

E(x) = K(x) + P (x), (5.10)

where K is the kinetic energy and P is the potential energy. Since we assume the

translational velocity is constant, we ignored the kinetic energy in this disserta-

tion. For the discussion below, the argument x is omitted.
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−4 −2 0 2 4
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0
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4

S G

(a) (b) (c)

Figure 5.7: (a) A simple scenario with trajectories found by PDPP (red) and

SDPP black). The start position and goal region are marked by red and yellow

squares, respectively. Different colors represent different elevations.(b) The alti-

tude of a robot as a function of time. (c) The cumulative energy consumption as

a function of time.

The potential energy P can be defined as:

P = Pg + Pf + Pa, (5.11)

where Pg = mvgh is the potential energy due to gravity, Pf = µmvg cos(φ)∆s is

the potential energy for friction, and Pa = 1
2ρfSaCdv

2∆s is the potential energy

for the aerodynamic force. Here, mv is the mass of the vehicle, h is the height, g

is the gravitational acceleration constant, φ is the heading angle with respect to

the ground plane, µf is the coefficient of friction, ∆s is the moving distance at

velocity v, Cd is the drag coefficient, ρf represents the density of the fluid, and

Sa represents the front area of the vehicle.

Evaluation

The cost function (5.9) based on the energy function defined in the previous

section is applied to all algorithms. All parameters used in this simulation study
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Figure 5.8: The average trajectory cost as a function of times for each scenario.

The average cost of each algorithm is computed from 10 independent trials. Leg-

end: RRT* (red), SCERRT* (green), TCERRT* (blue), CARRT*(M) (magenta)

and CARRT*(W) (black).

are set based on a Pioneer 3DX robot as follows: mv = 9kg, µf = 0.001, ρf =

1.22Ng2m−4, Sa = 0.087m2, Cd = 0.05. We assume that there is no obstacle in

the terrain but it can be easily introduced.

We generated three simple scenarios to study behaviors of different algorithms.

The first and second scenario has a valley and a hill, respectively, between x0

and xgoal. The third scenario has a few valleys and hills. Each algorithm is run

for 10 times to compute the average values. We extended the termination time

to 10,000 s, compared to (P1), since it took more time to find the optimal path

for these cases. Average energy consumptions for trajectories found by different

algorithms are shown as a function of the running time in Figure 5.8. The optimal

trajectory tends to go around local minimum or maximum regions, so it avoids

the valley and hill. The average minimum energy consumed by paths generated

by each algorithm is shown as a function of times in Figure 5.8.

We then tested algorithms with four complex scenarios. Each scenario has mul-

tiple valleys and hills, unlike the simple scenarios. We randomly set x0 and xgoal
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Figure 5.9: The average trajectory cost as a function of times for each scenario.

The average cost of each algorithm is computed from 10 independent trials. Leg-

end: RRT* (red), SCERRT* (green), TCERRT* (blue), CARRT*(M) (magenta)

and CARRT*(W) (black).

for all scenarios like in P1. Figure 5.9 shows the average minimum energy con-

sumption as a function of times for each algorithm. Once again, for all scenarios,

the proposed algorithm shows the best result. Likewise, the proposed algorithm

finds a trajectory with less cost at the beginning compared to other algorithms.

Furthermore, the final cost of result from the proposed algorithm is much less

than other algorithms, since the state space is more complex than the case of P1.

In order to validate trajectories obtained from simulation, we ran realistic

physics-based simulations using the robot operation system (ROS) [101]. The

ROS simulator provides a plugin for a differential-drive robot, such as Pioneer

3DX. The path found by a path planning algorithm is used to guide a robot in

ROS and Gazebo is used to display how a robot moves in the terrain. Snapshots

from the simulation are shown in Figure 5.10. The arrows represent a path found

by an algorithm. As shown before, CARRT*(M) goes around the valley since it

is more energy-efficient to move around a local valley.
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Figure 5.10: A sequence of snapshots of a Pioneer 3DX robot following a given

trajectory for the proposed algorithm in a ROS+Gazebo simulator. The white

arrows represent points from energy-efficient paths found by CARRT*(M).

5.5.3 (P3) Humanoid Motion Planning

State Space

A humanoid robot Nao shown in Figure 5.11(a) is used for the experimental

evaluation of CARRT*. It has a total of 25 degrees of freedom. Since we are

interested in manipulating arms of a Nao and each arm has five joints, we limit

the state space of Nao to five dimensional space, i.e., X ⊂ R5. Figure 5.11(b)

shows five joints. The configuration space Xfree is defined within the joint angle

constraints specified in Figure 5.11(b) and Xobs contains not only obstacles but

also the torso and the head of a Nao. We also consider a ten-dimensional space

for controlling both arms of a Nao.

Energy function

In this section, we define the energy function suitable for the motion of a hu-

manoid robot. Unlike a ground vehicle, the consumed energy of a humanoid robot

can be obtained by computing the joint torques. The time derivative of energy

function ∂E/∂t shown in (5.9) can be defined as follows:

∂E

∂t
= f(x) · ∂x

∂t
, (5.12)
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(a) (b)

Figure 5.11: (a) A Nao humanoid robot from Aldebaran. (b) Joints of the right

arm of Nao and joint angle constraints [102].

where f : X → Rd represents the torque function described in [103]. Joint torque

values are obtained from the torque function using humanoid manipulator dy-

namics [103]. In this work, we ignore the velocity and acceleration of joints and

approximate the torque function by considering only joint angles. When we mea-

sured the current flow on each joint from a robot in real experiments, the value

was too noisy. So we moved arms slow enough along the given trajectory to obtain

accurate measurements. Hence, the assumption barely affects the estimation of

the consumed energy.

Evaluation

We compared the proposed algorithm against the standard RRT and RRT*. We

generated two scenarios for single-arm and dual-arm manipulations: one is to

position both hands to hold a box on a table by moving arms without colliding

with the table and the another is to hand over an object from the right hand to
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the left hand by avoiding obstacles. Both scenarios are shown in Figure 5.13 and

5.14. For a single arm case, the same tasks are applied to only one arm and the

other arm is kept in the goal region.

For all scenarios, we performed a total of 10 simulations of each algorithm

using different pre-specified random seeds and set the time deadline to terminate

the algorithm as 10,000 seconds for a single-arm case and 30,000 seconds for a

dual-arm case, respectively.

Figure 5.12 shows the average cost of 10 trials, along with one standard devi-

ation error bars. The cost of the standard RRT was too high to be included in

Figure 5.12. In Scenario 1, the average costs of RRT for single and dual arm cases

were 896.6 J and 1882.4 J, respectively, and the average costs were 553.6 J and

1144.8 J, respectively, in Scenario 2. Even if RRT* converges to the optimal so-

lution given enough time, the cost of its initial solution is relatively high and the

converge rate is extremely slow. This is because RRT* requires dense sampling

to improve the path by refining the tree. The proposed algorithm finds the near-

optimal solution fast with fewer samples since it extends the tree using waypoints

found by considering the quality of the path. Thus, the proposed algorithm can

find a good solution faster. For both scenarios, the proposed algorithm shows the

best results.

Experiments

The processes of following the trajectory using a real humanoid robot for two

scenarios are shown in Figure 5.13 and Figure 5.14, respectively. Each figure

shows results obtained from RRT* and CARRT*, respectively, for the dual-arm

case. The red lines shown in Figure 5.14 represent the trajectories of end-effectors

(i.e., both hands).
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Figure 5.12: The average trajectory cost (in joules) as a function of deadlines for

two manipulation scenarios. The average cost of each algorithm is computed from

10 different runs with random seeds and one standard deviation is shown as error

bars.
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(a) RRT*

(b) CARRT*

Figure 5.13: Scenario 1: a robot moves hands to hold an object on a table. (a) and

(b) show the process of following a trajectory obtained from RRT* and CARRT*,

respectively from left (initial pose) to right (goal pose).

(a) RRT*

(b) CARRT*

Figure 5.14: Scenario 2: a robot hands over an object from the right hand to the

left hand while avoiding an obstacle on a table. Red lines in both figures represent

trajectories of hands.
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We demonstrate the results of experiments through the torque value and angle

derivative as a function of time shown in Figure 5.15. As explained in Section 5.2,

the proposed algorithm tends to plan a motion while maintaining a specific con-

figuration of the whole arm for energy efficiency. As shown in snapshots of the

first column of Figure 5.13, two hands of the robot are located under the table. In

order to place two hands in the position for holding an object, the robot should

first raise two arms to its side by moving the RShoulderRoll joint. There is a big

difference between two algorithms in terms of the energy consumption between

0 s and 15 s. The energy consumption of RRT* is relatively high during this in-

terval. RRT* immediately starts to move the RShoulderRoll joint while keeping

the current joints stationary. However, the initial position of the first scenario

requires more energy when it moves the RShoulderRoll joint. As shown in Fig-

ure 5.15(a), the torque value of RShoulderRoll is high at the beginning. Since

a multiplication of the torque and the angle derivative represents the consumed

energy derivative, it is more efficient to move other joints in the beginning, e.g.,

RShoulderPitch and RElbowRoll, to configurations with less torque values and

then move the RShoulderRoll joint as less as possible, which is what CARRT*

does.

The results are more distinguishable in the second scenario. While RRT* moves

directly to the goal state with less consideration about energy-efficient configura-

tions, the proposed algorithm first lifts both arms vertically and then move arms

horizontally to hand over an object (see red lines shown in Figure 5.14 for the

trajectory). It is confirmed from the torque and angle derivative values shown

in Figure 5.15(b). Since all joints, especially RShoulderRoll, have large torque

values between 0 s and 18 s as shown in Figure 5.15(b), the proposed algorithm

changes only RShoulderPitch while raising arms. Then, it gradually increases an-

103



Chapter 5. Fast Cost-Aware Path Planning using Stochastic
Optimization

T
im

e(
s)

0
10

20
30

40
50

60
70

80

∆Angle

0

0.
02

0.
04

0.
06

R
R

T
* 

- 
A

n
g

le

R
S

h
o

u
ld

er
P

it
ch

R
S

h
o

u
ld

er
R

o
ll

R
E

lb
o

w
R

o
ll

T
im

e(
s)

0
10

20
30

40
50

60
70

80

∆Angle

0

0.
02

0.
04

0.
06

C
A

R
R

T
* 

- 
A

n
g

le

R
S

h
o

u
ld

er
P

it
ch

R
S

h
o

u
ld

er
R

o
ll

R
E

lb
o

w
R

o
ll

T
im

e(
s)

0
10

20
30

40
50

60
70

80

Torque

0

10
0

20
0

30
0

R
R

T
* 

- 
T

o
rq

u
e

R
S

h
o

u
ld

er
P

it
ch

R
S

h
o

u
ld

er
R

o
ll

R
E

lb
o

w
R

o
ll

T
im

e(
s)

0
10

20
30

40
50

60
70

80

Torque

0

10
0

20
0

30
0

C
A

R
R

T
* 

- 
T

o
rq

u
e

R
S

h
o

u
ld

er
P

it
ch

R
S

h
o

u
ld

er
R

o
ll

R
E

lb
o

w
R

o
ll

T
im

e(
s)

0
10

20
30

40
50

60
70

80

∂E

∂t

01020

E
n

er
g

y 
d

er
iv

at
iv

e

R
R

T
*

C
A

R
R

T
*

(a
)

S
ce

n
a
ri

o
1

T
im

e(
s)

0
10

20
30

40
50

∆Angle

0

0.
02

0.
04

0.
06

R
R

T
* 

- 
A

n
g

le

R
S

h
o

u
ld

er
P

it
ch

R
S

h
o

u
ld

er
R

o
ll

R
E

lb
o

w
R

o
ll

T
im

e(
s)

0
10

20
30

40
50

60

∆Angle

0

0.
02

0.
04

0.
06

C
A

R
R

T
* 

- 
A

n
g

le

R
S

h
o

u
ld

er
P

it
ch

R
S

h
o

u
ld

er
R

o
ll

R
E

lb
o

w
R

o
ll

T
im

e(
s)

0
10

20
30

40
50

Torque

0

10
0

20
0

30
0

R
R

T
* 

- 
T

o
rq

u
e

R
S

h
o

u
ld

er
P

it
ch

R
S

h
o

u
ld

er
R

o
ll

R
E

lb
o

w
R

o
ll

T
im

e(
s)

0
10

20
30

40
50

60

Torque

0

10
0

20
0

30
0

C
A

R
R

T
* 

- 
T

o
rq

u
e

R
S

h
o

u
ld

er
P

it
ch

R
S

h
o

u
ld

er
R

o
ll

R
E

lb
o

w
R

o
ll

T
im

e(
s)

0
10

20
30

40
50

60

∂E

∂t

0102030
E

n
er

g
y 

d
er

iv
at

iv
e

R
R

T
*

C
A

R
R

T
*

(b
)

S
ce

n
ar

io
2

F
ig

u
re

5.
15

:
T

h
e

a
n

g
le

ch
a
n

ge
an

d
to

rq
u

e
va

lu
e

on
ea

ch
jo

in
t

as
a

fu
n
ct

io
n

of
ti

m
e

fo
r

(a
)

fi
rs

t
sc

en
a
ri

o

an
d

(b
)

se
co

n
d

sc
en

a
ri

o
.

T
op

fi
gu

re
s

sh
ow

h
ow

m
u

ch
ea

ch
jo

in
ts

m
ov

es
an

d
b

ot
to

m
fi

g
u

re
s

sh
ow

th
e

lo
ad

ed

to
rq

u
e

o
n

ea
ch

jo
in

t.
T

h
e

re
d

,
g
re

en
,

an
d

b
lu

e
li

n
e

re
p

re
se

n
ts

th
e

va
lu

es
of

R
S

h
ou

ld
er

P
it

ch
,

R
S

h
ou

ld
er

R
ol

l

an
d

R
E

lb
ow

R
o
ll

,
re

sp
ec

ti
ve

ly
.

104



Chapter 5. Fast Cost-Aware Path Planning using Stochastic
Optimization

Figure 5.16: Costs of paths found by RRT* and the proposed algorithm over

longer time deadlines (in seconds) for one trial.

gle derivatives of RSholderRoll and RElbowRoll after the torque value of those

joints are reduced.

Even for longer deadlines, the proposed algorithm shows superior performance

compared to RRT* as shown in Figure 5.16. Since dense sampling is required to

find the optimal solution in RRT*, much more time is needed in a high dimen-

sional space. Overall, the proposed algorithm tends to move joints for relatively

less torque values while maintaining a specific configuration of other joints to

reduce the consumed energy.

5.6 Summary

In this chapter, we have presented a cost-aware path planning algorithm which

finds the minimum cost trajectory in a complex configuration space. When a

costmap over a configuration space is available, the proposed algorithm finds a

suitable trajectory of a robot with the minimum cost. Furthermore, it finds a
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highly energy-efficient path for traversing a complex terrain with different eleva-

tion or performing a manipulation task in a high dimensional space. The proposed

method takes advantages of a sampling-based RRT* for exploration and nonmy-

opic tree extension using a stochastic optimization method, cross entropy (CE).

In simulation and experiments using a humanoid robot, the proposed algorithm

finds the more cost-efficient path in a shorter time.

106



Chapter 6

Efficient Informative Path

Planning

This chapter extends CAPP developed in chapter 5 to informative path planning

for mobile sensor networks. Our information gathering algorithm is inspired by

the information gathering algorithm based on RRG by Hollinger et al. [55]. In

[55], the asymptotic optimal path is guaranteed for single agent and unnecessary

nodes are efficiently pruned. We follow the similar approach but our algorithm

is based on a more computationally efficient information gathering algorithm for

multiple agents.

In this chapter, we propose a RRG-based planner, called CE-IPP, which ex-

tends the RIG planner [55]. CE-IPP uses cross entropy (CE) [36], a stochastic

optimization method, to efficiently estimate the reachable information gain. The

CE framework allows us to choose a (near) optimal informative trajectory among

trajectory samples which satisfy the budget constraint. The proposed algorithm

guarantees the asymptotic optimality like RRG and ensures to find a (near) opti-

mal informative path to the goal region which satisfies the cost budget constraint,
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if a such path exists. For each node in the graph, the proposed algorithm updates

the lower bound of the reachable information gain of the most informative path to

the goal region, which passes through the node. As more nodes are added to the

graph, the lower bound of the reachable information gain of each node improves

and converges to the maximum value in the limit.

6.1 Problem formulation

Let Q be a region, in which a robot (or a mobile sensor) performs its assigned

sensing tasks. Let X ⊂ Rn be the state space of the mobile sensor, where state

x ∈ X includes the position q ∈ Q. The motion model of the mobile sensor has

the form:

xt+1 = f(x(t), u(t)), (6.1)

where u(t) ∈ U ⊂ Rp is the control input applied at time t.

Let P be the trajectory of a mobile sensor, which is obtained from the motion

model (6.1) for given u(t) from t = 0 to t = T ∈ R+, where T is the termination

time. We assume in this dissertation that the motion of the mobile sensor is

deterministic. Let Σ be a set of all collision-free paths, such that, for P ∈ Σ,

P(t) ∈ Xfree for t ∈ [0, T ]. Let Ω ⊂ Σ be a set of all feasible paths, such that, for

P ∈ Ω, P(0) = xinit and P(T ) ∈ xgoal, where xinit ∈ X is the initial state and

xgoal ⊂ X is the goal region. Let c : Σ → R+ be a cost function, e.g., the path

length or the energy consumption of a robot following the path. The goal of a path

planning problem is to find the optimal control input and time parameterizing

the feasible trajectory which minimizes the cost function. We assume that the

cost function returns strictly positive value for any collision-free path and it is

monotonic, additive, and bounded.
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An IPP problem finds a path with the maximum information gain while con-

sidering the cost of the path. We can formulate an IPP problem as the following

optimization problem by placing the cost of a path as a budget constraint:

arg max
P∈Σ

I
(
P
)

subject to c(P) ≤ B, (6.2)

where the function I : Σ→ R+ returns the information collected along the path

and B ∈ R+ < ∞ is a budget for the maximum allowed cost. Generally, I is

submodular, i.e., it has the diminishing return property. It is known that the

problem of finding the optimal solution of a discrete version of (6.2) is NP-hard

[104, 105]. Hence, a greedy algorithm is used in practice by discretizing the search

space. If a path is defined in a continuous space, then solving (6.2) becomes more

challenging.

Let G = (V, E) be a graph, where V and E ⊆ V × V are finite sets of vertices

and edges, respectively. We denote Pba a trajectory initiated at a and arrived at

b (i.e., Pba(0) = a and Pba(T ) = b). Consider two partial path Pb1a1 and Pb2a2 with

different termination times T1 and T2, respectively. If Pb1a1(T1) = Pb2a2(0), then we

denote Pb1a1|Pb2a2 as the concatenated trajectory, i.e.,

Pb1a1|Pb2a2(t) :=


Pb1a1(t) for all t ∈ [0, T1],

Pb2a2(t− T1) for all t ∈ (T1, T1 + T2].

Given a vertex v ∈ V, a path via v can be defined as follows.

Definition 5. A v-trajectory Pv is a feasible concatenated trajectory Pb1a1|Pb2a2,

such that Pb1a1(T1) = Pb2a2(0) = v, Pb1a1|Pb2a2(0) = xinit,Pb1a1|Pb2a2(T1 + T2) ∈ xgoal,

and c(Pb1a1|Pb2a2) = c(Pb1a1) + c(Pb2a2) ≤ B.

With a slight abuse of notation, we will allow v ∈ V to be used in place of v’s

corresponding state x ∈ X . Let PvALG,n be the n-th v-trajectory via a fixed vertex
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Figure 6.1: Illustration of PvALG,n produced by an algorithm ALG. Given xinit and

xgoal, the algorithm ALG finds trajectories PvALG,n for all fixed vertices shown in

red and green circles (e.g., v1, v2). A trajectory Pv1ALG,n is a n-th trajectory which

passes through the fixed vertex v1.

v produced by an algorithm ALG. Since PvALG,n follows the Definition 5, it starts

at xinit, reaches the goal region and has the cost less than the budget B. For fixed

vertices v1 (red circle) and v2 (green circle), Pv1ALG,n and Pv2ALG,n are shown in

Figure 6.1. For any fixed vertex v ∈ V, we use gv,n = I(PvALG,n) to denote the

amount of information obtained along PvALG,n and define gv = max gv,j for 1 ≤

j ≤ n. Then the maximum of gv,n, g∗v , can be formulated as follows:

g∗v = lim sup
n→∞

gv,n. (6.3)

Since the algorithm constructs a graph V, a path from xinit to v for v ∈ V can be

obtained from the graph, so it estimates Pxgoalv , which is a partial path of PvALG.

If there exists a vertex v which gives no Pxgoalv due to the budget cost, gv at v

is set to 0. We can guarantee that g∗v < ∞ for all v ∈ V. Since the cost function

returns monotonically positive value for any collision-free path, any v-trajectory
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has finite length, so the amount of information is bounded. Let {VALGi }i∈N be the

set of vertices in the graph obtained from ALG at the end of iteration i. Assuming

that we can update gv at any fixed vertex v ∈ V as n increases, we can have g∗v

for all v ∈ {VALGi } as i→∞ since n→∞ as i→∞. Then the maximum value

among g∗v for all v ∈ {VALGi } is the maximum amount of information which can

be obtained from the ALG, i.e.,

max
v∈{VALG

i }
g∗v as i→∞. (6.4)

The optimal informative path planning problem asks for finding a feasible path

with maximum g∗v , so it can be redefined as follows:

Problem 1. Given g∗v for all v ∈ V, find a trajectory via v∗ such that v∗ =

arg maxv∈V g
∗
v. If there exists no such path, then failure is reported.

By solving Problem 1, we can find the asymptotically optimal path to the goal

via a vertex v ∈ V, which the vertex has the maximum g∗v value among all ver-

tices included in the graph G. We propose an incremental graph structure based

algorithm that utilizes a stochastic optimization method to generate informative

trajectories satisfying constraints in terms of the cost budget. This stochastic

optimization based method allows for the rapid generation of near optimal tra-

jectories even for complex information quality objectives.

6.2 Cost-Aware informative path planning (CAIPP)

This section deals with the application of the CE method to informative path

planning problem. We present the CE based informative path planning (CE-IPP)

algorithm which finds a path to the goal region while maximizing information gain

within the budget constraint. CE-IPP is based on RRG for optimal planning to
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the goal region and the cross entropy method for solving maximization problem

with inequality constraint. The key procedures can be outlined as:

1. Expand the graph to reach the goal region.

2. Generate a path to the goal within the budget at each node in the graph.

This is done via the CE Estimate function.

3. Update the lower bound of information at each node in the graph.

4. Repeat the above procedure until termination condition is satisfied.

To proceed the CE method, we need to define the probability density function

(pdf) p(·; θ) to update the CE parameters. It can be defined over a space of

parameters θ used in generating trajectories in continuous space. The pdf p(·; θ)

can be also replaced by M × A probability matrix P = (Pma) for producing

trajectories in discrete state space with M states, where A represents the number

of actions taken at each state [106]. Thus Pma denotes the probability of taking

action a at state m and the summation of Pma over a is 1 for all m.

6.2.1 Overall procedure

Algorithm 10 describes the main body of CE-IPP algorithm. The algorithm shares

the overall structure as RRG. However, since the original RRG focuses on opti-

mizing cost along the path without constraint, it has not been applied to infor-

mation gathering problem which maximizes information with budget constraint.

However, since the cost constraint is included additionally, it has not been able

to apply the information gathering problem directly. In order to apply RRG to

information gathering problem, we slightly modify RRG by adding the extra pro-

cedure when the graph grows. This procedure follows the approach presented in

112



Chapter 6. Efficient Informative Path Planning

[55]. Whenever the new node is added, edges are created from near nodes to the

new node and vice versa. In order to determine whether to insert the edge to the

graph or not, we check a cost integrated along the trajectory from xinit to the end

node of the new edge (i.e., near node or new node). If the cost is over the budget,

then the corresponding edge is deleted. Furthermore, in order to find a solution

efficiently, we find a near-optimal path at each node using the cost-to-go value

(i.e., the remained budget at the node) if there exists a feasible path. Then we

can approximate possible information quantity to be able to collect at any node

in the graph. Since CE-IPP follows RRG and each node has the achievable infor-

mation quantity, it guarantees asymptotic optimality while satisfying the budget

constraint and provide an efficient approach for a solution even if any node in the

graph is not contained in the goal region.

The graph V initially contains only one point xinit as an initial node. The main

control loop, lines 2-25, terminates once stopping criterion satisfies the condition.

At each iteration, the graph grows by drawing a new sample xnew and then

adding edges between xnew and its nearest vertices xnearest or between xnew and

its near vertices xnear as in the RRG algorithm, where if the distance between

xnearest and xnew is over δ, Steer(xnearest, xnew) repositions xnew to be feasible

and δ away from xnearest toward xnew (lines 5-7). A set of xnear in the graph

that are close to xnew are returned as Xnear through Near function (line 8).

Xnear are within a ball of radius r ∝ ( log(n)
n )

1
d centered at xnew as explained

in [53], where n is the number of vertices in G and d is the state dimension.

The stopping criterion can be the number of iterations after reaching the goal

region from any node in graph, the maximum number of iterations, or a time

deadline. If the line segment connecting between the near nodes and the new

node is not in collision with obstacles, then the edge is inserted into the graph
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and Update Bound function is called (lines 12-23). A function, Update Bound,

sets gv at the node v, where gv is the maximum value among the information

quantities gathered along v-trajectories found so far. A v-trajectory is founded

through CE Estimate function.

Two critical functions of CE-IPP, Update Bound and CE Estimate, are de-

scribed below.

6.2.2 Update Bound

The Update Bound procedure used in the CE-IPP algorithm is given in Algo-

rithm 11 and shown in Figure 6.2. Whenever the new feasible point xnew is se-

lected, since connections from the xnew’s all neighbor vertices to the xnew is tried,

co-located nodes are generated at xnew. Figure 6.2(a) shows multiple co-located

nodes of the vertex xnew (e.g., xnew 1, xnew 2, xnew 3). These co-located nodes

represent the vertices which have the same location but different paths Pxnew
xinit

.

Because the cost of each Pxnew
xinit

is different, each remaining budget at co-located

nodes is determined according to cost of each Pxnew
xinit

. On the other hand, the

co-located nodes of xnear arise when successful connections from the co-located

nodes of xnew to xnear is done as shown in Figure 6.2(b). Given the co-located

nodes at each vertex, Update Bound function is performed. After updating the

cost Cx′ i using a co-located node x i of x (line 3) and the remained budget Bx′ i

(line 4), CE Estimate finds the near optimal trajectory Pxgoalx′ i initiated at each

x′ i to the goal region within Bx′ i and computes the information quantity Ix′ i

along Px′ ixinit
∪Pxgoalx′ i (line 5). If a path cannot be found at x′ i due to the budget

.constraint, CE Estimate function returns the empty Pxgoalx′ i and Ix′ i. Then we

drop the co-located node x′ i, and repeat CE Estimate for a different x′ i.

After setting a lower bound on possible information quantity along a path via
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Algorithm 10 CE-IPP

Require: 1. Start position xinit and goal position xgoal

2. Budget B

3. A ball of radius r for neighbors

Ensure: The most informative path from xinit to xgoal within B

1: V ← {xinit}, E ← ∅,G ← (V, E) Cxinit ← 0

2: while stopping criterion is false do

3: xnew ← a random sample from Q

4: xnearest ← Nearest Neighbor(V, xnew);

5: if ‖xnearest, xnew‖ > δ then

6: xnew ← Steer(xnearest, xnew)

7: end if

8: Xnear ← Near(xnew, r)

9: gxnew ← 0

10: V ← V ∪ {xnew}

11: Ixnew ← 0

12: for all xnear ∈ Xnear do

13: if CollisionFree(xnear, xnew) then

14: E ← E ∪ {(xnear, xnew)}

15: gxnew ← Update Bound(xnear, xnew)

16: end if

17: end for
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18: for all xnear ∈ Xnear do

19: if CollisionFree(xnew, xnear) then

20: E ← E ∪ {(xnew, xnear)}

21: gxnear ← Update Bound(xnew, xnear)

22: end if

23: end for

24: G ← (V, E)

25: end while

26: Find v which satisfies (6.4)

Algorithm 11 Update Bound(x, x′)

Ensure: gx′

1: gx′ ← maxx′i∈x′ Ix′i
2: for all x i ∈ x do

3: Cx′ i ← Cx i + c(x i, x′)

4: Bx′ i ← B − Cx′ i

5: 〈Pxgoalx′ i , Ix′ i〉 ← CE Estimate(x′, xgoal,Px
′ i

xinit
,Bx′ i)

6: if Ix′ i > gx′ then

7: gx′ ← Ix′ i

8: end if

9: end for

116



Chapter 6. Efficient Informative Path Planning

xnew, a lower bound of each Ixnear along a path via the neighbors of xnew is set

by choosing the best information quantity so far. Whenever any vertex x in the

graph is selected as a neighbor of a newly steered vertex, the lower bound of

information along a path via x is updated. Thus the information quantity along

the path via x asymptotically increases to the optimal value.

6.2.3 CE Estimate

The CE Estimate function is the modified version of Algorithm 4 outlined in

Section 5.3. The function returns a probabilistically near-optimal trajectory from

any vertex v to the goal region using the remained budget Bv at v and the

information quantity collected along the v-trajectory Pv.

Unlike Algorithm 4 which focuses on samples minimizing a cost function, the

function tries to generate samples which maximize an information function con-

sidering the budget constraint and it can be formulated as follows:

max
P

xgoal
v ∈Ω

I(Pvxinit
∪ Pxgoalv ) subject to c(Pxgoalv ) ≤ Bv, (6.5)

where Pvxinit
∪ Pxgoalv = Pv and Bv = B − c(Pvxinit

). As shown in (6.5), the

CE Estimate function needs Pvx0 as an input to find the near-optimal trajec-

tory from v to the goal. Since the information function used in this dissertation

is submodular, the prior trajectory to v is involved in determining Pxgoalv . By

considering Pvx0 as a part of the trajectory Pv, the following property is satisfied.

I(Pv) + I(Pvxinit
∩ Pxgoalv ) ≤ I(Pvxinit

) + I(Pxgoalv ), (6.6)

where Pvxinit
∩ Pxgoalv represents the overlapped portion between two trajectories

Pvxinit
and Pxgoalv .

It is important to generate trajectory samples from p(·; θk) at k = 0 which

cover the search space well. In this dissertation, it is assumed that p(·; θk) follows
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(a) Update procedure at xnew

(b) Update procedure at xnear

Figure 6.2: This figure shows the different paths initiated at multiple co-located

nodes for each vertex in the graph. In (a), once xnew is inserted into the graph,

since all edges from three neighbor vertices are added, there exists multiple co-

located nodes of the vertex xnew. In contrast, in (b) edges from multiple co-located

nodes of xnew to xnear generate co-located nodes at xnear. For each vertex in

graph, Update Bound function determines the best information quantity along

each trajectory estimated at co-located nodes (e.g., P̂xgoalxnew i for i = 1, 2, 3 at xnew).
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a normal distribution with the parameter θk = (µk,Σk) like [79]. By adjusting

the covariance Σ0 to cover the region of interest, we can get those initial samples.

However, there exists a limitation in initial sampling since a budget constraint

is added in the procedure of generating samples. The coverage and the budget

are in conflict each other (i.e., for good coverage, more budget is required and

coverage can be poor for small budget). Thus we need to find the feasible region

satisfying the budget for sampling. The parameter θk consists of m primitives.

In this section, we assume that the primitives are waypoints and the budget

represents the length of the path. This possible subset of states that satisfies the

budget, can then be expressed in closed form in terms of the budget B as

Xsample free = {x ∈ Xfree|‖x− x′‖2 + ‖xgoal − x′‖2 ≤ B} (6.7)

which is the general equation of an n-dimensional prolate hyperspheroid (i.e., a

special hyperellipsoid). The focal points are x and xgoal, the transverse diameter

is B, and the conjugate diameters are
√
B2 − L2 as shown in Figure 6.3. In other

words, each waypoint should be sampled in Xsample free which is determined

depending on the remained budget, i.e., Bv − c(x). Again we use the truncated

normal distributions based on Xsample free by following (6.8).

f(x|µ, µ−, µ+, σ) =
exp −(x−µ)2

2σ2√
2πσ[Φ(µ

+−µ
σ )− Φ(µ

−−µ
σ )]

(6.8)

The lower and upper boundary of each sample for m-th primitive is computed

based on the ellipse equation. In the setting of truncated normal distributions,

all primitive samples are obtained by generating successively the components of
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Figure 6.3: The sampling domain, Xsample free, for a R2 problem seeking to satisfy

the budget B is an ellipse with the initial state, x, and the goal state, xgoal as

a focal points. A center of the ellipse is denoted as z. The shape of the ellipse

depends on both initial and goal states and the budget B.

N (µ,Σ,Xsample free), i.e.,

x1 ∼ N (E(µ1|µ2, · · · , µm), µ1, µ
−
1 , µ

+
1 , σ

2
1)

x2 ∼ N (E(µ2|µ1, µ3, · · · , µm), µ2, µ
−
2 , µ

+
2 , σ

2
2)

...

xm ∼ N (E(µm|µ1, · · · , µm−1), µm, µ
−
m, µ

+
m, σ

2
m) (6.9)

6.3 Analysis of CAIPP

In this section, we show that the trajectory obtained from CA-IPP algorithm

converges to the optimal one as the number of samples goes to infinity, given

some reasonable assumptions. We begin by stating following assumptions from

[54, 53, 55].
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Assumption 1. For three different states x1, x2, and x3, we assume that there

exists trajectories which are Pba,Pca, and Pcb . If x2 ∈ Pca, then the concatenated

trajectory Pba|Pcb must be equal to Pca and have same cost and information.

This assumption states that the concatenated trajectory is consistent for in-

termediate points and it has consistent cost and information functions. This as-

sumption is required since if infinite samples are added, samples will be infinitely

close together.

Assumption 2. There exists a ε-free feasible path π such that the minimal dis-

tance between π and the obstacle region is ε for any point x ∈ π, i.e., Bε(x) ∈

Xfree.

This assumption requires that some free space be available around any tra-

jectory for convergence to the optimal trajectory. Final assumption is about the

sample function.

Assumption 3. The sample function returns an independent and identically

distributed sample from Xfree, which are drawn from a uniform distribution.

In order to show that CE-IPP can produce the optimal solution as the number

of samples goes to infinity, we should obtain g∗v at all v ∈ VALGi as i→∞. It can

be shown by the following lemma.

Theorem 4. Let Ωv,B,i denote the set of v-trajectories, where v is contained in the

graph built by CE-IPP at iteration i for budget B. We have that limi→∞Ωv,B,i =

Ωv,B

Proof. See Appendix D.
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6.4 Simulation and experimental results

6.4.1 Single robot informative path planning

This section is devoted to the effectiveness of the algorithm considered in the dis-

sertation through the following simulations. The simulations were implemented

in MATLAB and run on a computer with a 3.2GHz Intel i7 processor and 8 GB

RAM. All simulations were performed five times for each algorithm using differ-

ent pre-specified random seeds. A first set of simulations were run to illustrate

the different performance of the proposed algorithm and RIG-graph algorithm

presented in [55]. Since RIG-graph shows the asymptotic optimality, we examine

how efficiently the algorithm finds the solution. First, we assume the following

simple variance map which represents the uncertainty of the sensing field with

a 10 km × 10 km environment. For fair comparison, the map is made similarly

to the map used to apply RIG-graph to continuous space in [55] using Gaussian

Process. We deployed 74 static sensors on equally spaced 11 by 11 grid points for

the initial uncertainty map. By placing the static sensors, the initial map has a

certain region which has high uncertainty than other regions as shown in Figure

6.4. High uncertainty is represented by red and low uncertainty is represented

by blue. We assume that we can estimate the uncertainty map by measuring

the static sensors at all times. The vehicle used in this dissertation can move

1 km distance in a continuous space based on the point-mass dynamics. Any

other dynamics can be also applied to the algorithm. In order to capture the

informativeness of the trajectory, we chose maximizing the reduction in variance

of the field as the information function used in [50]. Since the selected informa-

tion function is submodular, it requires discretized grid space as an input, so we

convert the path found in continuous space to points in 11 by 11 grid space by
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choosing the closest grid point. Furthermore, as [55] assume, we also assume that

taking multiple measurements at the same location does not affect the collected

information quantity. While [55] used the discrete environments to show the per-

formance for finding the optimal solution, all simulations in this dissertation were

run in the continuous environment with the 8 km budget constraint. Since there

exists a fixed goal region, we limit the graph extension when the remaining bud-

get of the node exceeds the shortest distance from the node to the goal region.

Figure 6.4 shows a visual comparison of the RIG-graph and CE-IPP through

sequential process of building a graph and obtaining the maximum informative

trajectory from the graph. A white and black rectangle represent the start point

and the goal region, respectively and cyan dots is the vertices in the graph. The

maximum informative trajectory is represented by a black line. Since the pro-

posed algorithm estimates the near-optimal path using CE at any node of the

graph, more computation is required when the algorithm iterates for inserting a

new node. However, CE-IPP returns an initial informative path more efficiently

than RIG-graph since it can estimate the path using the remained budget at any

node even if the graph does not reach the goal region. Moreover, the initially

obtained path from CE-IPP is more informative than the results obtained from

RIG-graph for much longer running time, thus convergence rate is much faster

than RIG-graph. The results for five simulations are shown in Figure 6.5(a) for

the maximum value of the informative path as a function of running time. For

all trials, the proposed algorithm shows the superior performance.

The performance is more distinguishable in a complex map. As shown in Figure

6.6, we placed 17 sensors randomly to make a complex map and set the budget

to 20 to cover the whole region. The trajectory obtained from CE-IPP passes

by covering high uncertainty regions over the whole search space. Figure 6.5(b)
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shows five results of each algorithm. Again, the proposed algorithm finds the

near-optimal solution efficiently compared to RIG-graph. As mentioned in the

previous section, when RIG-graph computes the maximally reachable informa-

tion to prune any co-located node which does not affect in terms of the optimality

of the algorithm, a reachable region (i.e., a set of points which cover the region)

is required. However, the reachable region is the same for many co-located nodes

when a large initial budget is given, thereby causing pruning procedure meaning-

less. Furthermore, we scaled the grid size of the map to 21 × 21 with the same

sensor placements and applied both algorithms. There is no big difference for

CE-IPP even if the size of the map increases. On the other hand, RIG-graph

requires more time for the bigger size map.

Hence, the proposed CE-IPP algorithm finds near optimal solution very quickly

showing superior performance in computation efficiency and robustness for the

size of the map compared to the RIG-graph algorithm.

6.4.2 Multi robot informative path planning

One approach for extending any single robot planning algorithm to plan simul-

taneous paths with multiple robots is to form a new graph where each node

represents the vector of locations of all k robots, and then apply the single robot

algorithm to this product graph. Unfortunately, the size of this product graph

grows exponentially in k, which is infeasible for large teams of robots. However,

in order to find the optimal path for each robot while performing a planning

task simultaneously, such product graph is essential. One of the strength of the

proposed algorithm is efficient in high dimensional space. Therefore, we applied

the proposed algorithm in the product space. First we tested in the complex map

explained in 6.4.1. In order to compare the results, we also applied the proposed
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(a) Simple map (b) Complex map

Figure 6.5: The maximally collected information quantity along the path as a

function of running time in simple map(a) and complex map(b).

(a) RIG-Graph (b) CE-IPP

Figure 6.6: The results of two algorithms, RIG-graph (a) and CE-IPP (b), applied

to the complex map generated using 17 static sensors.
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algorithm in a greedy manner. In other words, after finding a path for a single

robot within the time deadline, we found a path for another robot during the time

deadline. We compared results for different running time using different number

of robots. For fair comparison, we first set the total running time and distribute

the time deadline to run single planning for each robot in greedy version. Figure

6.7 shows the obtained information from two approaches. For all cases, the results

are superior to greedy version.

We also tested using another scenario which represents sea surface tempera-

ture field of Gulf of Mexico as shown in Figure 6.8. Red color represents high

temperature and blue color represents low temperature. We placed no initial sen-

sors and all robots have the same start point and goal region. Figure 6.9 and

Figure 6.10 shows the trajectory results obtained from two different approaches,

respectively. As shown in those figures, there exists the overlap region in greedy

version. Since large overlap region means obtaining redundant information, the

solutions are long way from the optimal solutions. However, the proposed multi

robot planning approach finds much better solutions within the same running

time.

6.5 Summary

We have presented a new approach which solves the informative path planning

problem over continuous space for environmental monitoring. The proposed al-

gorithm combines the sampling based planning method, RRG, and stochastic

optimization method, CE. It guarantees asymptotic optimality, but, in addition,

it can also return the near-optimal informative path at any node of the con-

structed spanning graph if there exists a path satisfying the constraint in terms

of the cost function. We have shown that the proposed algorithm finds the optimal
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(a) 2 agents (b) 3 agents

(c) 4 agents (d) 5 agents

Figure 6.7: The results of two approaches, greedy version and proposed method

for different number of agents from 2 to 5 during the different running time.
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Figure 6.8: Sea surface temperature field of Gulf of Mexico. Red region represents

high temperature and blue region represents low temperature.

(a) 2 agents (b) 3 agents

Figure 6.9: Trajectory results using two and three agents in a greedy manner.
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(a) 2 agents (b) 3 agents

Figure 6.10: Trajectory results using two and three agents in a proposed multi-

robot planning approach.

solution more efficiently by comparing against the state-of-the-art algorithm and

show scalability of the proposed algorithm regardless of the size of grid resolution

even when the search space is complex.
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Conclusion and Future Work

In this dissertation, we have solved two key fundamental problems in mobile sen-

sor networks, which are localization and coordination problems of agents. For

localization problem, we have presented a coordinated localization algorithm for

mobile sensor networks. The global positioning system is able to provide syn-

chronization and localization information, however in many situations, especially

indoor environment, it cannot be relied on, and alternative methods are required.

Therefore, we have designed the algorithm to solve the challenging localization

problem under the GPS denied or unstructured indoor environment using an

inexpensive off-the-shelf platform. By taking the advantage of a multi-agent sys-

tem, we have shown that we can reliably localize robots over time as they perform

a group task. In experiment, we have demonstrated that the proposed method

consistently achieves a small localization error for long trajectories.

After developing the multi-robot localization system, we have presented a novel

approach to handle the coordination of multiple agents for mobile sensor net-

works. Since robots perform tasks in a complex configuration space, where it has

environmental parameters such as temperature, humidity, chemical concentra-
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tion, stealthiness and elevation or has more than three dimensions, robots can

be navigated efficiently through cost-aware planner for the given environment.

Unlike the traditional methods, While sampling-based path planning algorithms,

such as rapidly-exploring random tree (RRT) and its variants, have been highly

effective for general path planning problems, it is still difficult or inefficient to find

the minimum cost path in a complex space since RRT-based algorithms extend

a search tree locally, requiring a large number of samples to find a good solu-

tion. The proposed algorithm uses global stochastic optimization method based

on sampling based algorithm. By using global stochastic optimization method for

tree extension, we have shown that the proposed method finds the minimum cost

in the space with environmental parameters and a highly energy-efficient path

for traversing a complex terrain with different elevation or performing a manip-

ulation task in a high dimensional space. Furthermore, we have shown that the

proposed algorithm has the probabilistic completeness property and asymptotic

optimality when the number of samples goes to infinity.

We have also presented an efficient information gathering strategy suitable for

mobile sensor networks. Resource constraints prevent us from using traditional

coordination methods, because these typically require bulky, expensive, and so-

phisticated sensors, substantial memory and processor allocation, and a generous

power supply. We describe the optimal planning method controlling mobile nodes

in order to satisfy the resource constraints while collecting data.

For future works, more theoretical analysis about the convergence rate for

the proposed algorithm and deep analysis for global stochastic optimization are

required. Moreover, we will perform experiments using real robot to estimate the

environmental field such as temperature of building and chemical concentration.
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Proof of Theorem 1

We first need the following lemma to prove Theorem 1 and Theorem 2.

Lemma 1. Assume that there exists an input u ∈ U = [umin, umax], which steers

a robot from x(t) = x ∈ Xfree to x(t + ∆t) = x′ ∈ Rε(x) for some ∆t > 0 and

ε > 0. Then, there exists c > 0, such that a randomly chosen input from U has

the probability at least c of steering a robot from x to a point in Bε(x′).

Proof. If the state of the robot is at x at time t, the state at time t + ∆t is

x(t+ ∆t) = x(t) +
∫ t+∆t
t f(x(t), u(t))dt. Since

ẋ = f(x, u) =
dx

dt
' x(t+ ∆t)− x(t)

∆t
, (A.1)

for small amount of time ∆t, the solution can be written as

x(t+ ∆t) = x′ = x+ ∆tf(x, u) + ξ1, (A.2)

where ξ1 is the high order term. If a perturbed input, u + δ, is applied to the

system for small δ, then the state z at time t+ ∆t is as follows:

z(t+ ∆t) = x+ ∆tf(x, u+ δ) + ξ2. (A.3)
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Provided that |ξ1 − ξ2| is negligible for small ∆t, we can find δ such that ‖x(t+

∆t)− z(t+ ∆t)‖ < ε since f is a smooth function and Lipschitz continuous with

respect to x and u in our operating domain. Hence, with probability at least

c = |δ|/(umax− umin) > 0, we can randomly select an input to steer the robot to

Bε(x′).

We now prove Theorem 1. Suppose that there is an ε-free feasible path from the

starting point xinit to the goal region xgoal. Then there exists a sequence of inputs

u0, . . . , uk, such that x0 = xinit, x1, . . . , xk+1 and xk+1 ∈ xgoal. We can then follow

the proof of Theorem 3 in [29] to show the probabilistic completeness of RRT

with inputs randomly selected from a bounded continuous set using Lemma 1.
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Proof of Theorem 2

CARRT* attempts to perform a long extension towards xrand if the distance

between xnearest and xrand is larger than η. Hence, if we can show that an or-

dinary RRT algorithm can construct a tree with a long extension constructed

by CARRT*, Theorem 1 can be applied to show the probabilistic complete-

ness of CARRT*. Suppose that there exists an ε-free feasible path π(t) from

xnearest = π(0) to xrand = π(T ) towards xrand. We first construct a set of balls of

radius at least ε, B = {B0, . . . ,BM}, covering π. The center of B0 is xnearest and

the centers of two consecutive balls are exactly ‖π(t) − π(t + ∆t)‖ apart. Each

ball Bm for m ∈ {1, . . . ,M} has radius ε centered at each configuration π(m∆t)

for all m ∈ {1, 2, . . . ,M}, where T = M∆t. Without loss of generality, we assume

that all vertices in the RRT tree, except xnearest, are at least (1 + i)ε away from

Bi for all i.

From Lemma 1, we know that xnearest can reach within B1 with a positive

probability for a random input on some time interval [0,∆t], Now, we extend

the applied input time to 2∆t. By the Lipschitz continuity of the system and

the existence of an ε-free feasible path to the goal, there exists R2ε(xnearest) and
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R2ε(xnearest)∩B1 is measurable. Hence, we can find a nonempty range of inputs to

steer from a state in R2ε(xnearest)∩B1 to a state in B2 on time interval [∆t, 2∆t]

using Lemma 1 again. Thus, we can sample inputs sequentially such that each

new vertex added to the RRT tree falls in each ball Bm sequentially. Since M is

finite, there is a positive probability that a long extension from xnearest to xrand

can be added by the RRT algorithm.
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Proof of Theorem 3

The proof of the theorem is similar to that of Theorem 38 in [53] for holonomic

dynamical system and Theorem 5 in [107] for nonholonomic dynamical system.

We first review the asymptotic optimality condition of RRT* and show that

CARRT* satisfies those conditions. In order to show the asymptotic optimality

of RRT*, we begin with the construction of a sequence of paths {πn} of εn-free

feasible paths from xinit to xgoal and show that πn converges to the optimal

path π∗ as n → ∞ by making a set of ball sequences {Bn}, such that Bn covers

πn for all n [53]. Consider any sequence Bn = {Bn,1, . . . ,Bn,M} from {Bn}. If

each ball contains at least one vertex of RRT* with probability one, then a

vertex x in Bn,m is connected to a vertex x′ in the consecutive ball Bn,m+1 for

all m. This is possible due to the choice of γRRT∗ and the connection radius

rn = γRRT ∗(
log(n)
n )

1
d . Let π′n be a path obtained by RRT* after n iterations. It

is shown that π′n converges to πn as n increases with probability one. Since π′n

converges to πn and πn converges to π∗, RRT* is asymptotically optimal. Hence,

the critical condition for the asymptotic optimality is that vertices within radius

rn are connected in a cost-efficient manner.
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At the end of every iteration, CARRT* grows by generating the path P∗(t) from

x = P∗(0) to x′ = P∗(T ) towards xrand for any random point xrand like RRT*.

However, since CARRT* performs a long extension for ‖x− xrand‖ > η, P∗(t) is

obtained by applying sequentially sampled inputs with time interval ∆t from x to

x′ unlike RRT*. In order to insert the whole path P∗(t) to the tree without losing

information of P∗(t), we first discretize P∗(t) into a set of vertices {x0, . . . , xK}

with time interval ∆t, located at P∗(k∆t), where x0 = x, . . . , xK = x′ and

T = K∆t. Then, for a set of vertices, {x1, . . . , xK}, except x0, CARRT* regards

each vertex as a new vertex added to the RRT tree and sequentially inserts

xk and edge to xk to the tree. For any vertex xk inserted to tree, CARRT*

performs the rewiring procedure by attempting to create an edge from the vertex

xk to its neighbors within radius rn = γRRT ∗(
log(n)
n )

1
d . Note that since CARRT*

adds several vertices to the tree in a single iteration unlike RRT*, n denotes the

number of vertices in the tree. On this account, we can show the existence of

the connection between balls with radius rn. Using this fact and Lemma 71 in

[53], we know that each ball in Bn contains vertices and every subsequent balls in

Bn are connected via vertices with probability one as n increases. It follows that

P(limn→∞ π
′
n = π∗) = 1 due to Lemma 72 in [53]. Hence, CARRT* returns an

optimal solution asymptotically as desired.
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Proof of Theorem 4

(Sketch) The proof of this lemma follows directly from Lemma 4.4 by Hollinger

and Sukhatme [55]. They stated that all feasible trajectories for budget B can

be generated if the algorithm builds an infinitely dense connected graph and

the length of all feasible trajectories obtained from the algorithm is finite. If

the number of samples goes to infinity within a ball around any x ∈ Xfree, the

graph within the ball becomes the dense connected graph and this procedure can

be extended to all x, thereby giving an infinitely dense connected graph within

Xfree. Since the proposed algorithm follows the RRG structure like algorithms

proposed in [53, 54, 55], it can also build such a graph. Furthermore, as explained

in Section 6.1, any path included in Ωv,B,i has finite length. Since Ωv,B is included

in the set of all feasible trajectories for budget B, the graph built by the proposed

algorithm contains all trajectories via v.
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Dubins’ curve

Dubins’ curves represent the shortest path between any two configurations and

each path in Dubins’ curves can be generated using three primitive motions which

are left (L), right(R) turn, and straight (S) motion. Such path has the minimum

turning radius ρ (i.e.,ρ = 1) and moves at constant velocity [92]. Dubins’ curves

consist of possibly optimal six paths which are

{LSL,RSR,RSL,LSR,RLR,LRL}. (E.1)

To be more precise, the duration of each primitive should be specified. Let any

subscripts (t, p, q) denote total amount of rotation that accumulates during the

application of the primitive for turning motion or the total distance traveled for

straight motion. Using such subscripts, the Dubins’ curves can be more precisely

presented as

{LqSpLt, RqSpRt, RqSpLt, LqSpRt, RqLpRt, LqRpLt} (E.2)

We derive the equations for the length of each path based on [108] given the

initial and final configuration in this dissertation. We first define three motion
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operators for any configuration as follows:

Lv(x, y, θ) = (x+ S(θ + v)− S(θ), y − C(θ + v) + C(θ), θ + v) (E.3)

Rv(x, y, θ) = (x− S(θ − v) + S(θ), y + C(θ − v)− C(θ), θ − v) (E.4)

Sv(x, y, θ) = (x+ vC(θ), y + vS(θ), θ), (E.5)

where Lv(x, y, θ) is the result configuration when applying left turn motion oper-

ator at (x, y, θ) and v represents the moving distance along the motion segment.

Suppose that a path starts at (0, 0, α) and ends at (d, 0, β). Then the length of

each path is formulated as follows:

(1) LqSpLt(0, 0, α) = (d, 0, β). (E.6)

Through the motion operators (E.3), this path can be represented by three scalar

equations as follows:

p cos(α+ t)− sin(α) + sin(β) = d (E.7)

p sin(α+ t) + cos(α)− cos(β) = 0 (E.8)

α+ t+ q = β{mod2π}. (E.9)

The solution for t, p, q is found as

t = −α+ arctan(
dy − C(α) + C(β)

dx+ S(α)− S(β)
) (E.10)

p =
√

2 +A− 2C(α− β) + 2dx(S(α)− S(β))− 2dy(C(α)− C(β))

q = β − α− t

(2) Rq(Sp(Rt(0, 0, α))) = (d, 0, β). (E.11)
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Three scalar equations:

p cos(α− t) + sin(α)− sin(β) = d (E.12)

p sin(α− t)− cos(α) + cos(β) = 0 (E.13)

α− t− q = β{mod2π}. (E.14)

The solution is

t = α− arctan(
dy + C(α)− C(β)

dx− S(α) + S(β)
) (E.15)

p =
√

2 +A− 2C(α− β) + 2dx(−S(α) + S(β)) + 2dy(C(α)− C(β))

q = α− t− β

(3) Rq(Sp(Lt(0, 0, α))) = (d, 0, β). (E.16)

Three scalar equations are

p cos(α+ t) + 2 sin(α+ t)− sin(α)− sin(β) = d (E.17)

p sin(α+ t)− 2 cos(α+ t) + cos(α) + cos(β) = 0 (E.18)

α+ t− q = β{mod2π}. (E.19)

The solution of this system is

t = −α+ arcsin(
−p(−dy + C(α) + C(β)) + 2(dx+ S(α) + S(β))

p2 + 4
) (E.20)

p =
√
−2 +A+ 2C(α− β) + 2dx(S(α) + S(β))− 2dy(C(α) + C(β))

q = α+ t− β

(4) Lq(Sp(Rt(0, 0, α))) = (d, 0, β). (E.21)

The corresponding scalar equations are

p cos(α− t)− 2 sin(α− t) + sin(α) + sin(β) = d (E.22)

p sin(α− t) + 2 cos(α− t)− cos(α)− cos(β) = 0 (E.23)

α− t+ q = β{mod2π}. (E.24)
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The corresponding solution is

t = α− arcsin(
p(dy + C(α) + C(β)) + 2(−dx+ S(α) + S(β))

p2 + 4
) (E.25)

p =
√
−2 +A+ 2C(α− β)− 2dx(S(α) + S(β)) + 2dy(C(α) + C(β))

q = α+ t− β

(5) Rq(Lp(Rt(0, 0, α))) = (d, 0, β). (E.26)

Scalar equations:

2 sin(α− t+ p)− 2 sin(α− t) + sin(α)− sin(β) = d (E.27)

−2 cos(α− t+ p) + 2 cos(α− t)− cos(α) + cos(β) = 0 (E.28)

α− t+ p− q = β{mod2π}. (E.29)

The solution of this system is

t = α+
p

2
− arctan(

dy + C(α)− C(β)

dx− S(α) + S(β)
) (E.30)

p = arccos
(1

8
(6−A+ 2C(α− β) + 2dx(S(α)− S(β)))− 2dy(C(α)− C(β)))

)
q = α− β − t+ p

(6) Lq(Rp(Lt(0, 0, α))) = (d, 0, β). (E.31)

The corresponding scalar equations are

−2 sin(α+ t− p) + 2 sin(α+ t)− sin(α) + sin(β) = d (E.32)

2 cos(α+ t− p)− 2 cos(α+ t) + cos(α)− cos(β) = 0 (E.33)

α+ t− p+ q = β{mod2π}. (E.34)

The corresponding solution is

t = −α+
p

2
+ arctan(

dy − C(α) + C(β)

dx+ S(α)− S(β)
) (E.35)

p = arccos
(1

8
(6−A+ 2C(α− β)− 2dx(S(α)− S(β))) + 2dy(C(α)− C(β)))

)
q = −α+ β − t+ p,
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where A represents dx2 + dy2 and C(·) and S(·) represent cos(·) and sin(·), re-

spectively.
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초 록

주위 환경변화에 대한 적응성이 약하다는 문제점이 있는 기존의 무선 센서네트워

크와는 달리 무선 센서 네트워크에 로보틱스 기술을 적용한 모바일 센서네트워크는

이러한 문제점을 극복할 수 있다. 하지만 모바일 센서네트워크에서도 해결해야 할

문제들이 존재한다. 그 중 가장 먼저 해결해야하는 문제들이 바로 센서들의 위치정

보를 알아내고 센서 배치를 위해 배치 장소까지 경로를 탐색하고 이동하면서 주위

환경에 대한 정보를 얻는 것이다. 본 논문에서는 모바일 센서네트워크의 이동성을

이용하여 위치 측정과 경로 탐색 알고리즘을 개발하고 제안한 경로 탐색 방법의 이

점을 이용하여 에너지의 제한이 있는 모바일 센서로부터 주위 환경의 정보를 얻을

수 있는 coverage 제어 방법을 제안한다.

본 논문에서는 GPS가 동작하지 않는 환경, 특히 실내에서 저가의 로봇 플랫폼을

이용하여모바일센서네트워크에적합한위치측정알고리즘을개발한다.먼저로봇

들을 2개의 그룹, 정지 로봇과 이동 로봇으로 나누고 이동 로봇들은 정지 로봇들의

시야 내에서 움직인다. 정지 로봇들은 카메라 센서를 통해 이동 로봇들을 추적하

고 이동 로봇들의 이동 경로가 시공간적 특징점으로 사용된다. 이러한 시공간적

특징점으로부터 multi-view geometry를 이용하여 정지 로봇들의 상대적 위치들을

계산하고 전체 기준 좌표계에 따라 모든 로봇들의 위치를 계산한다. 모든 로봇들의

위치를계산한후에정지로봇들은 formation을유지하면서네비게이션전략에따라

이동하고동시에위치측정을하면서맡은임무를수행한다.제안한방법이저비용의

노이즈가 심한 카메라 센서를 이용하여 지속적으로 강인한 위치 정보를 제공한다

는 것을 실험을 통해 보여줌으로써 비용이 저렴한 로봇 플랫폼을 요구하는 모바일

센서네트워크에 적합하다는 것을 보여준다.

본논문은또한특정위치로모바일센서들을배치하기위한경로탐색알고리즘을

제안한다. 기존의 경로 탐색방법과 달리 주어진 환경을 고려하여 모바일 센서네트

워크에 적합한 효율적인 비용인지 경로 탐색 방법을 개발한다. 본 논문은 샘플링

기반의 경로 탐색 방법의 효율성을 높이기 위해 전역적 확률 최적화 방법인 Cross
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Entropy방법을 이용하여 트리를 확장하는 첫 번째 방법이다. 제안한 방법은 무작위

로 선택된 노드 방향으로 트리를 확장하기 위한 트리내의 노드를 결정하기 위해서

사용되는 일반적인 RRT 트리인 첫 번째 트리와 트리를 확장할 때 전역적 확장을

수용하여 확장하는 두 번째 트리를 구성함으로써 알고리즘의 효율성을 개선하고

점근적 최적성을 보장한다.

모바일 센서네트워크에 적합하도록 에너지가 한정된 모바일 센서들을 이용하여

제안한경로탐색방법을기반으로하는 coverage제어시스템을개발한다.일반적인

경로 탐색 방법과 달리 정보를 얻는 경로 탐색 방법은 제약이 있는 극대화 문제를 풀

어야하기때문에훨씬어렵고 discrete환경에서도 NP-hard문제이다.본논문에서는

CE방법을 이용하여 효율적인 방법을 제안한다. 제안한 알고리즘은 최신 알고리즘

보다 더 효율적이며 점근적 최적성을 보장한다. 또한 기존의 방법들과 달리 여러

로봇에 적용가능하기 때문에 모바일 센서네트워크에 적합하다고 볼 수 있다.

결론적으로, 제안한 방법들은 모바일 센서네트워크에서 가장 먼저 해결해야 하는

문제들인 센서들의 위치 측정, 경로 탐색, coverage 제어 문제들을 해결한다. 제안한

방법들은 기존의 방법들과 달리 가격이 저렴한 로봇 플랫폼을 이용하여 저렴한 센

서에 강인한 위치 측정문제를 풀고 주위 환경을 고려하여 효율적으로 경로 탐색을

하며여러로봇에적용할수있는효율적인 coverage제어방법을제안하였기때문에

모바일 센서네트워크에 적합하다.

주요어: 실내 위치 측정 시스템, 비용인지 경로 탐색, 멀티 로봇을 이용한 coverage

제어
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