2 research outputs found

    Towards Real-Time Crowd Simulation Under Uncertainty Using an Agent-Based Model and an Unscented Kalman Filter

    Get PDF
    Agent-based modelling (ABM) is ideally suited to simulating crowds of people as it captures the complex behaviours and interactions between individuals that lead to the emergence of crowding. Currently, it is not possible to use ABM for real-time simulation due to the absence of established mechanisms for dynamically incorporating real-time data. This means that, although models are able to perform useful offline crowd simulations, they are unable to simulate the behaviours of crowds in real time. This paper begins to address this drawback by demonstrating how a data assimilation algorithm, the Unscented Kalman Filter (UKF), can be used to incorporate pseudo-real data into an agent-based model at run time. Experiments are conducted to test how well the algorithm works when a proportion of agents are tracked directly under varying levels of uncertainty. Notably, the experiments show that the behaviour of unobserved agents can be inferred from the behaviours of those that are observed. This has implications for modelling real crowds where full knowledge of all individuals will never be known. In presenting a new approach for creating real-time simulations of crowds, this paper has important implications for the management of various environments in global cities, from single buildings to larger structures such as transportation hubs, sports stadiums, through to entire city regions

    Coupling an Agent-Based Model and Ensemble Kalman Filter for Real-Time Crowd Modelling

    Get PDF
    Agent-based modelling has emerged as a powerful tool for modelling systems that are driven by discrete, heterogeneous individuals and has proven particularly popular in the realm of pedestrian simulation. However, real-time agent-based simulations face the challenge that they will diverge from the real system over time. This paper addresses this challenge by integrating the Ensemble Kalman Filter (EnKF) with an agent-based crowd model to enhance its accuracy in real-time. Using the example of Grand Central Station in New York, we demonstrate how our approach can update the state of an agent-based model in real-time, aligning it with the evolution of the actual system. The findings reveal that the EnKF can substantially improve the accuracy of agent-based pedestrian simulations by assimilating data as they evolve. This approach not only offers efficiency advantages over existing methods but also presents a more realistic representation of a complex environment than most previous attempts. The potential applications of this method span the management of public spaces under ‘normality’ to exceptional circumstances such as disaster response, marking a significant advancement for real-time agent-based modelling applications
    corecore