262 research outputs found

    Which Training Methods for GANs do actually Converge?

    Full text link
    Recent work has shown local convergence of GAN training for absolutely continuous data and generator distributions. In this paper, we show that the requirement of absolute continuity is necessary: we describe a simple yet prototypical counterexample showing that in the more realistic case of distributions that are not absolutely continuous, unregularized GAN training is not always convergent. Furthermore, we discuss regularization strategies that were recently proposed to stabilize GAN training. Our analysis shows that GAN training with instance noise or zero-centered gradient penalties converges. On the other hand, we show that Wasserstein-GANs and WGAN-GP with a finite number of discriminator updates per generator update do not always converge to the equilibrium point. We discuss these results, leading us to a new explanation for the stability problems of GAN training. Based on our analysis, we extend our convergence results to more general GANs and prove local convergence for simplified gradient penalties even if the generator and data distribution lie on lower dimensional manifolds. We find these penalties to work well in practice and use them to learn high-resolution generative image models for a variety of datasets with little hyperparameter tuning.Comment: conferenc

    LoGAN: Generating Logos with a Generative Adversarial Neural Network Conditioned on color

    Get PDF
    Designing a logo is a long, complicated, and expensive process for any designer. However, recent advancements in generative algorithms provide models that could offer a possible solution. Logos are multi-modal, have very few categorical properties, and do not have a continuous latent space. Yet, conditional generative adversarial networks can be used to generate logos that could help designers in their creative process. We propose LoGAN: an improved auxiliary classifier Wasserstein generative adversarial neural network (with gradient penalty) that is able to generate logos conditioned on twelve different colors. In 768 generated instances (12 classes and 64 logos per class), when looking at the most prominent color, the conditional generation part of the model has an overall precision and recall of 0.8 and 0.7 respectively. LoGAN's results offer a first glance at how artificial intelligence can be used to assist designers in their creative process and open promising future directions, such as including more descriptive labels which will provide a more exhaustive and easy-to-use system.Comment: 6 page, ICMLA1

    Generating Multi-Categorical Samples with Generative Adversarial Networks

    Get PDF
    We propose a method to train generative adversarial networks on mutivariate feature vectors representing multiple categorical values. In contrast to the continuous domain, where GAN-based methods have delivered considerable results, GANs struggle to perform equally well on discrete data. We propose and compare several architectures based on multiple (Gumbel) softmax output layers taking into account the structure of the data. We evaluate the performance of our architecture on datasets with different sparsity, number of features, ranges of categorical values, and dependencies among the features. Our proposed architecture and method outperforms existing models

    Max-Sliced Wasserstein Distance and its use for GANs

    Full text link
    Generative adversarial nets (GANs) and variational auto-encoders have significantly improved our distribution modeling capabilities, showing promise for dataset augmentation, image-to-image translation and feature learning. However, to model high-dimensional distributions, sequential training and stacked architectures are common, increasing the number of tunable hyper-parameters as well as the training time. Nonetheless, the sample complexity of the distance metrics remains one of the factors affecting GAN training. We first show that the recently proposed sliced Wasserstein distance has compelling sample complexity properties when compared to the Wasserstein distance. To further improve the sliced Wasserstein distance we then analyze its `projection complexity' and develop the max-sliced Wasserstein distance which enjoys compelling sample complexity while reducing projection complexity, albeit necessitating a max estimation. We finally illustrate that the proposed distance trains GANs on high-dimensional images up to a resolution of 256x256 easily.Comment: Accepted to CVPR 201
    corecore