17,512 research outputs found

    Information as Distinctions: New Foundations for Information Theory

    Full text link
    The logical basis for information theory is the newly developed logic of partitions that is dual to the usual Boolean logic of subsets. The key concept is a "distinction" of a partition, an ordered pair of elements in distinct blocks of the partition. The logical concept of entropy based on partition logic is the normalized counting measure of the set of distinctions of a partition on a finite set--just as the usual logical notion of probability based on the Boolean logic of subsets is the normalized counting measure of the subsets (events). Thus logical entropy is a measure on the set of ordered pairs, and all the compound notions of entropy (join entropy, conditional entropy, and mutual information) arise in the usual way from the measure (e.g., the inclusion-exclusion principle)--just like the corresponding notions of probability. The usual Shannon entropy of a partition is developed by replacing the normalized count of distinctions (dits) by the average number of binary partitions (bits) necessary to make all the distinctions of the partition

    A tree-decomposed transfer matrix for computing exact Potts model partition functions for arbitrary graphs, with applications to planar graph colourings

    Get PDF
    Combining tree decomposition and transfer matrix techniques provides a very general algorithm for computing exact partition functions of statistical models defined on arbitrary graphs. The algorithm is particularly efficient in the case of planar graphs. We illustrate it by computing the Potts model partition functions and chromatic polynomials (the number of proper vertex colourings using Q colours) for large samples of random planar graphs with up to N=100 vertices. In the latter case, our algorithm yields a sub-exponential average running time of ~ exp(1.516 sqrt(N)), a substantial improvement over the exponential running time ~ exp(0.245 N) provided by the hitherto best known algorithm. We study the statistics of chromatic roots of random planar graphs in some detail, comparing the findings with results for finite pieces of a regular lattice.Comment: 5 pages, 3 figures. Version 2 has been substantially expanded. Version 3 shows that the worst-case running time is sub-exponential in the number of vertice

    Solving weighted and counting variants of connectivity problems parameterized by treewidth deterministically in single exponential time

    Full text link
    It is well known that many local graph problems, like Vertex Cover and Dominating Set, can be solved in 2^{O(tw)}|V|^{O(1)} time for graphs G=(V,E) with a given tree decomposition of width tw. However, for nonlocal problems, like the fundamental class of connectivity problems, for a long time we did not know how to do this faster than tw^{O(tw)}|V|^{O(1)}. Recently, Cygan et al. (FOCS 2011) presented Monte Carlo algorithms for a wide range of connectivity problems running in time $c^{tw}|V|^{O(1)} for a small constant c, e.g., for Hamiltonian Cycle and Steiner tree. Naturally, this raises the question whether randomization is necessary to achieve this runtime; furthermore, it is desirable to also solve counting and weighted versions (the latter without incurring a pseudo-polynomial cost in terms of the weights). We present two new approaches rooted in linear algebra, based on matrix rank and determinants, which provide deterministic c^{tw}|V|^{O(1)} time algorithms, also for weighted and counting versions. For example, in this time we can solve the traveling salesman problem or count the number of Hamiltonian cycles. The rank-based ideas provide a rather general approach for speeding up even straightforward dynamic programming formulations by identifying "small" sets of representative partial solutions; we focus on the case of expressing connectivity via sets of partitions, but the essential ideas should have further applications. The determinant-based approach uses the matrix tree theorem for deriving closed formulas for counting versions of connectivity problems; we show how to evaluate those formulas via dynamic programming.Comment: 36 page

    Free probability aspect of irreducible meander systems, and some related observations about meanders

    Full text link
    We consider the concept of irreducible meandric system introduced by Lando and Zvonkin. We place this concept in the lattice framework of NC(n). As a consequence, we show that the even generating function for irreducible meandric systems is the R-transform of XY, where X and Y are classically (commuting) independent random variables, and each of X,Y has centred semicircular distribution of variance 1. Following this point of view, we make some observations about the symmetric linear functional on polynomials which has R-transform given by the even generating function for meanders.Comment: Two new remarks in Sections 3 and 5, and an additional referenc

    Trivial Meet and Join within the Lattice of Monotone Triangles

    Get PDF
    The lattice of monotone triangles (Mn,)(\mathfrak{M}_n,\le) ordered by entry-wise comparisons is studied. Let τmin\tau_{\min} denote the unique minimal element in this lattice, and τmax\tau_{\max} the unique maximum. The number of rr-tuples of monotone triangles (τ1,,τr)(\tau_1,\ldots,\tau_r) with minimal infimum τmin\tau_{\min} (maximal supremum τmax\tau_{\max}, resp.) is shown to asymptotically approach rMnr1r|\mathfrak{M}_n|^{r-1} as nn \to \infty. Thus, with high probability this event implies that one of the τi\tau_i is τmin\tau_{\min} (τmax\tau_{\max}, resp.). Higher-order error terms are also discussed.Comment: 15 page

    Dobinski-type relations and the Log-normal distribution

    Full text link
    We consider sequences of generalized Bell numbers B(n), n=0,1,... for which there exist Dobinski-type summation formulas; that is, where B(n) is represented as an infinite sum over k of terms P(k)^n/D(k). These include the standard Bell numbers and their generalizations appearing in the normal ordering of powers of boson monomials, as well as variants of the "ordered" Bell numbers. For any such B we demonstrate that every positive integral power of B(m(n)), where m(n) is a quadratic function of n with positive integral coefficients, is the n-th moment of a positive function on the positive real axis, given by a weighted infinite sum of log-normal distributions.Comment: 7 pages, 2 Figure
    corecore