175 research outputs found

    Proximity as a Service via Cellular Network-Assisted Mobile Device-to-Device

    Get PDF
    PhD ThesisThe research progress of communication has brought a lot of novel technologies to meet the multi-dimensional demands such as pervasive connection, low delay and high bandwidth. Device-to-Device (D2D) communication is a way to no longer treat the User Equipment (UEs) as a terminal, but rather as a part of the network for service provisioning. This thesis decouples UEs into service providers (helpers) and service requesters. By collaboration among proximal devices, with the coordination of cellular networks, some local tasks can be achieved, such as coverage extension, computation o oading, mobile crowdsourcing and mobile crowdsensing. This thesis proposes a generic framework Proximity as a Service (PaaS) for increasing the coverage with demands of service continuity. As one of the use cases, the optimal helper selection algorithm of PaaS for increasing the service coverage with demands of service continuity is called ContAct based Proximity (CAP). Mainly, fruitful contact information (e.g., contact duration, frequency, and interval) is captured, and is used to handle ubiquitous proximal services through the optimal selection of helpers. The nature of PaaS is evaluated under the Helsinki city scenario, with movement model of Points Of Interest (POI) and with critical factors in uencing the service demands (e.g., success ratio, disruption duration and frequency). Simulation results show the advantage of CAP, in both success ratio and continuity of the service (outputs). Based on this perspective, metrics such as service success ratio and continuity as a service evaluation of the PaaS are evaluated using the statistical theory of the Design Of Experiments (DOE). DOE is used as there are many dimensions to the state space (access tolerance, selected helper number, helper access limit, and transmit range) that can in uence the results. A key contribution of this work is that it brings rigorous statistical experiment design methods into the research into mobile computing. Results further reveal the influence of four factors (inputs), e.g., service tolerance, number of helpers allocated, the number of concurrent devices supported by each helper and transmit range. Based on this perspective, metrics such as service success ratio and continuity are evaluated using DOE. The results show that transmit range is the most dominant factor. The number of selected helpers is the second most dominant factor. Since di erent factors have di erent regression levels, a uni ed 4 level full factorial experiment and a cubic multiple regression analysis have been carried out. All the interactions and the corresponding coe cients have been found. This work is the rst one to evaluate LTE-Direct and WiFi-Direct in an opportunistic proximity service. The contribution of the results for industry is to guide how many users need to cooperate to enable mobile computing and for academia. This reveals the facts that: 1, in some cases, the improvement of spectrum e ciency brought by D2D is not important; 2, nodal density and the resources used in D2D air-interfaces are important in the eld of mobile computing. This work built a methodology to study the D2D networks with a di erent perspective (PaaS)

    Towards Mobile Edge Computing: Taxonomy, Challenges, Applications and Future Realms

    Get PDF
    The realm of cloud computing has revolutionized access to cloud resources and their utilization and applications over the Internet. However, deploying cloud computing for delay critical applications and reducing the delay in access to the resources are challenging. The Mobile Edge Computing (MEC) paradigm is one of the effective solutions, which brings the cloud computing services to the proximity of the edge network and leverages the available resources. This paper presents a survey of the latest and state-of-the-art algorithms, techniques, and concepts of MEC. The proposed work is unique in that the most novel algorithms are considered, which are not considered by the existing surveys. Moreover, the chosen novel literature of the existing researchers is classified in terms of performance metrics by describing the realms of promising performance and the regions where the margin of improvement exists for future investigation for the future researchers. This also eases the choice of a particular algorithm for a particular application. As compared to the existing surveys, the bibliometric overview is provided, which is further helpful for the researchers, engineers, and scientists for a thorough insight, application selection, and future consideration for improvement. In addition, applications related to the MEC platform are presented. Open research challenges, future directions, and lessons learned in area of the MEC are provided for further future investigation

    Flooding Data in a Cell: Is Cellular Multicast Better than Device-to-Device Communications?

    Get PDF
    International audienceA natural method to disseminate popular data on cellular networks is to use multicast. Despite having clear advantages over unicast, multicast does not offer any kind of reliability and could result costly in terms of cellular resources in the case at least one of the destinations is at the edge of the cell (i.e., with poor radio conditions). In this paper, we show that, when content dissemination tolerates some delay, providing device-to-device communications over an orthogonal channel increases the efficiency of multicast, concurring also to offload part of the traffic from the infrastructure. Our evaluation simulates an LTE macro-cell with mobile receivers and reveals that the joint utilization of device-to-device communications and multicasting brings significant resource savings while increasing the cellular throughput

    Cognitive networking for next generation of cellular communication systems

    Get PDF
    This thesis presents a comprehensive study of cognitive networking for cellular networks with contributions that enable them to be more dynamic, agile, and efficient. To achieve this, machine learning (ML) algorithms, a subset of artificial intelligence, are employed to bring such cognition to cellular networks. More specifically, three major branches of ML, namely supervised, unsupervised, and reinforcement learning (RL), are utilised for various purposes: unsupervised learning is used for data clustering, while supervised learning is employed for predictions on future behaviours of networks/users. RL, on the other hand, is utilised for optimisation purposes due to its inherent characteristics of adaptability and requiring minimal knowledge of the environment. Energy optimisation, capacity enhancement, and spectrum access are identified as primary design challenges for cellular networks given that they are envisioned to play crucial roles for 5G and beyond due to the increased demand in the number of connected devices as well as data rates. Each design challenge and its corresponding proposed solution are discussed thoroughly in separate chapters. Regarding energy optimisation, a user-side energy consumption is investigated by considering Internet of things (IoT) networks. An RL based intelligent model, which jointly optimises the wireless connection type and data processing entity, is proposed. In particular, a Q-learning algorithm is developed, through which the energy consumption of an IoT device is minimised while keeping the requirement of the applications--in terms of response time and security--satisfied. The proposed methodology manages to result in 0% normalised joint cost--where all the considered metrics are combined--while the benchmarks performed 54.84% on average. Next, the energy consumption of radio access networks (RANs) is targeted, and a traffic-aware cell switching algorithm is designed to reduce the energy consumption of a RAN without compromising on the user quality-of-service (QoS). The proposed technique employs a SARSA algorithm with value function approximation, since the conventional RL methods struggle with solving problems with huge state spaces. The results reveal that up to 52% gain on the total energy consumption is achieved with the proposed technique, and the gain is observed to reduce when the scenario becomes more realistic. On the other hand, capacity enhancement is studied from two different perspectives, namely mobility management and unmanned aerial vehicle (UAV) assistance. Towards that end, a predictive handover (HO) mechanism is designed for mobility management in cellular networks by identifying two major issues of Markov chains based HO predictions. First, revisits--which are defined as a situation whereby a user visits the same cell more than once within the same day--are diagnosed as causing similar transition probabilities, which in turn increases the likelihood of making incorrect predictions. This problem is addressed with a structural change; i.e., rather than storing 2-D transition matrix, it is proposed to store 3-D one that also includes HO orders. The obtained results show that 3-D transition matrix is capable of reducing the HO signalling cost by up to 25.37%, which is observed to drop with increasing randomness level in the data set. Second, making a HO prediction with insufficient criteria is identified as another issue with the conventional Markov chains based predictors. Thus, a prediction confidence level is derived, such that there should be a lower bound to perform HO predictions, which are not always advantageous owing to the HO signalling cost incurred from incorrect predictions. The outcomes of the simulations confirm that the derived confidence level mechanism helps in improving the prediction accuracy by up to 8.23%. Furthermore, still considering capacity enhancement, a UAV assisted cellular networking is considered, and an unsupervised learning-based UAV positioning algorithm is presented. A comprehensive analysis is conducted on the impacts of the overlapping footprints of multiple UAVs, which are controlled by their altitudes. The developed k-means clustering based UAV positioning approach is shown to reduce the number of users in outage by up to 80.47% when compared to the benchmark symmetric deployment. Lastly, a QoS-aware dynamic spectrum access approach is developed in order to tackle challenges related to spectrum access, wherein all the aforementioned types of ML methods are employed. More specifically, by leveraging future traffic load predictions of radio access technologies (RATs) and Q-learning algorithm, a novel proactive spectrum sensing technique is introduced. As such, two different sensing strategies are developed; the first one focuses solely on sensing latency reduction, while the second one jointly optimises sensing latency and user requirements. In particular, the proposed Q-learning algorithm takes the future load predictions of the RATs and the requirements of secondary users--in terms of mobility and bandwidth--as inputs and directs the users to the spectrum of the optimum RAT to perform sensing. The strategy to be employed can be selected based on the needs of the applications, such that if the latency is the only concern, the first strategy should be selected due to the fact that the second strategy is computationally more demanding. However, by employing the second strategy, sensing latency is reduced while satisfying other user requirements. The simulation results demonstrate that, compared to random sensing, the first strategy decays the sensing latency by 85.25%, while the second strategy enhances the full-satisfaction rate, where both mobility and bandwidth requirements of the user are simultaneously satisfied, by 95.7%. Therefore, as it can be observed, three key design challenges of the next generation of cellular networks are identified and addressed via the concept of cognitive networking, providing a utilitarian tool for mobile network operators to plug into their systems. The proposed solutions can be generalised to various network scenarios owing to the sophisticated ML implementations, which renders the solutions both practical and sustainable
    • …
    corecore