1,517 research outputs found

    Structural Routability of n-Pairs Information Networks

    Full text link
    Information does not generally behave like a conservative fluid flow in communication networks with multiple sources and sinks. However, it is often conceptually and practically useful to be able to associate separate data streams with each source-sink pair, with only routing and no coding performed at the network nodes. This raises the question of whether there is a nontrivial class of network topologies for which achievability is always equivalent to routability, for any combination of source signals and positive channel capacities. This chapter considers possibly cyclic, directed, errorless networks with n source-sink pairs and mutually independent source signals. The concept of downward dominance is introduced and it is shown that, if the network topology is downward dominated, then the achievability of a given combination of source signals and channel capacities implies the existence of a feasible multicommodity flow.Comment: The final publication is available at link.springer.com http://link.springer.com/chapter/10.1007/978-3-319-02150-8_

    Product Multicommodity Flow in Wireless Networks

    Get PDF
    We provide a tight approximate characterization of the nn-dimensional product multicommodity flow (PMF) region for a wireless network of nn nodes. Separate characterizations in terms of the spectral properties of appropriate network graphs are obtained in both an information theoretic sense and for a combinatorial interference model (e.g., Protocol model). These provide an inner approximation to the n2n^2 dimensional capacity region. These results answer the following questions which arise naturally from previous work: (a) What is the significance of 1/n1/\sqrt{n} in the scaling laws for the Protocol interference model obtained by Gupta and Kumar (2000)? (b) Can we obtain a tight approximation to the "maximum supportable flow" for node distributions more general than the geometric random distribution, traffic models other than randomly chosen source-destination pairs, and under very general assumptions on the channel fading model? We first establish that the random source-destination model is essentially a one-dimensional approximation to the capacity region, and a special case of product multi-commodity flow. Building on previous results, for a combinatorial interference model given by a network and a conflict graph, we relate the product multicommodity flow to the spectral properties of the underlying graphs resulting in computational upper and lower bounds. For the more interesting random fading model with additive white Gaussian noise (AWGN), we show that the scaling laws for PMF can again be tightly characterized by the spectral properties of appropriately defined graphs. As an implication, we obtain computationally efficient upper and lower bounds on the PMF for any wireless network with a guaranteed approximation factor.Comment: Revised version of "Capacity-Delay Scaling in Arbitrary Wireless Networks" submitted to the IEEE Transactions on Information Theory. Part of this work appeared in the Allerton Conference on Communication, Control, and Computing, Monticello, IL, 2005, and the Internation Symposium on Information Theory (ISIT), 200

    Maximum Edge-Disjoint Paths in kk-sums of Graphs

    Full text link
    We consider the approximability of the maximum edge-disjoint paths problem (MEDP) in undirected graphs, and in particular, the integrality gap of the natural multicommodity flow based relaxation for it. The integrality gap is known to be Ω(n)\Omega(\sqrt{n}) even for planar graphs due to a simple topological obstruction and a major focus, following earlier work, has been understanding the gap if some constant congestion is allowed. In this context, it is natural to ask for which classes of graphs does a constant-factor constant-congestion property hold. It is easy to deduce that for given constant bounds on the approximation and congestion, the class of "nice" graphs is nor-closed. Is the converse true? Does every proper minor-closed family of graphs exhibit a constant factor, constant congestion bound relative to the LP relaxation? We conjecture that the answer is yes. One stumbling block has been that such bounds were not known for bounded treewidth graphs (or even treewidth 3). In this paper we give a polytime algorithm which takes a fractional routing solution in a graph of bounded treewidth and is able to integrally route a constant fraction of the LP solution's value. Note that we do not incur any edge congestion. Previously this was not known even for series parallel graphs which have treewidth 2. The algorithm is based on a more general argument that applies to kk-sums of graphs in some graph family, as long as the graph family has a constant factor, constant congestion bound. We then use this to show that such bounds hold for the class of kk-sums of bounded genus graphs

    NeuRoute: Predictive Dynamic Routing for Software-Defined Networks

    Full text link
    This paper introduces NeuRoute, a dynamic routing framework for Software Defined Networks (SDN) entirely based on machine learning, specifically, Neural Networks. Current SDN/OpenFlow controllers use a default routing based on Dijkstra algorithm for shortest paths, and provide APIs to develop custom routing applications. NeuRoute is a controller-agnostic dynamic routing framework that (i) predicts traffic matrix in real time, (ii) uses a neural network to learn traffic characteristics and (iii) generates forwarding rules accordingly to optimize the network throughput. NeuRoute achieves the same results as the most efficient dynamic routing heuristic but in much less execution time.Comment: Accepted for CNSM 201

    Throughput Optimal On-Line Algorithms for Advanced Resource Reservation in Ultra High-Speed Networks

    Full text link
    Advanced channel reservation is emerging as an important feature of ultra high-speed networks requiring the transfer of large files. Applications include scientific data transfers and database backup. In this paper, we present two new, on-line algorithms for advanced reservation, called BatchAll and BatchLim, that are guaranteed to achieve optimal throughput performance, based on multi-commodity flow arguments. Both algorithms are shown to have polynomial-time complexity and provable bounds on the maximum delay for 1+epsilon bandwidth augmented networks. The BatchLim algorithm returns the completion time of a connection immediately as a request is placed, but at the expense of a slightly looser competitive ratio than that of BatchAll. We also present a simple approach that limits the number of parallel paths used by the algorithms while provably bounding the maximum reduction factor in the transmission throughput. We show that, although the number of different paths can be exponentially large, the actual number of paths needed to approximate the flow is quite small and proportional to the number of edges in the network. Simulations for a number of topologies show that, in practice, 3 to 5 parallel paths are sufficient to achieve close to optimal performance. The performance of the competitive algorithms are also compared to a greedy benchmark, both through analysis and simulation.Comment: 9 pages, 8 figure

    Multiflow Transmission in Delay Constrained Cooperative Wireless Networks

    Full text link
    This paper considers the problem of energy-efficient transmission in multi-flow multihop cooperative wireless networks. Although the performance gains of cooperative approaches are well known, the combinatorial nature of these schemes makes it difficult to design efficient polynomial-time algorithms for joint routing, scheduling and power control. This becomes more so when there is more than one flow in the network. It has been conjectured by many authors, in the literature, that the multiflow problem in cooperative networks is an NP-hard problem. In this paper, we formulate the problem, as a combinatorial optimization problem, for a general setting of kk-flows, and formally prove that the problem is not only NP-hard but it is o(n1/7−ϵ)o(n^{1/7-\epsilon}) inapproxmiable. To our knowledge*, these results provide the first such inapproxmiablity proof in the context of multiflow cooperative wireless networks. We further prove that for a special case of k = 1 the solution is a simple path, and devise a polynomial time algorithm for jointly optimizing routing, scheduling and power control. We then use this algorithm to establish analytical upper and lower bounds for the optimal performance for the general case of kk flows. Furthermore, we propose a polynomial time heuristic for calculating the solution for the general case and evaluate the performance of this heuristic under different channel conditions and against the analytical upper and lower bounds.Comment: 9 pages, 5 figure
    • …
    corecore