90,337 research outputs found

    Moment-Based Relaxation of the Optimal Power Flow Problem

    Full text link
    The optimal power flow (OPF) problem minimizes power system operating cost subject to both engineering and network constraints. With the potential to find global solutions, significant research interest has focused on convex relaxations of the non-convex AC OPF problem. This paper investigates ``moment-based'' relaxations of the OPF problem developed from the theory of polynomial optimization problems. At the cost of increased computational requirements, moment-based relaxations are generally tighter than the semidefinite relaxation employed in previous research, thus resulting in global solutions for a broader class of OPF problems. Exploration of the feasible space for test systems illustrates the effectiveness of the moment-based relaxation.Comment: 7 pages, 4 figures. Abstract accepted, full paper in revie

    A Homotopy-Based Method for Optimization of Hybrid High-Low Thrust Trajectories

    Get PDF
    Space missions require increasingly more efficient trajectories to provide payload transport and mission goals by means of lowest fuel consumption, a strategic mission design key-point. Recent works demonstrated that the combined (or hybrid) use of chemical and electrical propulsion can give important advantages in terms of fuel consumption, without losing the ability to reach other mission objectives: as an example the Hohmann Spiral Transfer, applied in the case of a transfer to GEO orbit, demonstrated a fuel mass saving between 5-10% of the spacecraft wet mass, whilst satisfying a pre-set boundary constraint for the time of flight. Nevertheless, methods specifically developed for optimizing space trajectories considering the use of hybrid high-low thrust propulsion systems have not been extensively developed, basically because of the intrinsic complexity in the solution of optimal problem equations with existent numerical methods. The study undertaken and presented in this paper develops a numerical strategy for the optimization of hybrid high-low thrust space trajectories. An indirect optimization method has been developed, which makes use of a homotopic approach for numerical convergence improvement. The adoption of a homotopic approach provides a relaxation to the optimal problem, transforming it into a simplest problem to solve in which the optimal problem presents smoother equations and the shooting function acquires an increased convergence radius: the original optimal problem is then reached through a homotopy parameter continuation. Moreover, the use of homotopy can make possible to include a high thrust impulse (treated as velocity discontinuity) to the low thrust optimal control obtained from the indirect method. The impulse magnitude, location and direction are obtained following from a numerical continuation in order to minimize the problem cost function. The initial study carried out in this paper is finally correlated with particular test cases, in order to validate the work developed and to start investigating in which cases the effectiveness of hybrid-thrust propulsion subsists

    Solution of Optimal Power Flow Problems using Moment Relaxations Augmented with Objective Function Penalization

    Full text link
    The optimal power flow (OPF) problem minimizes the operating cost of an electric power system. Applications of convex relaxation techniques to the non-convex OPF problem have been of recent interest, including work using the Lasserre hierarchy of "moment" relaxations to globally solve many OPF problems. By preprocessing the network model to eliminate low-impedance lines, this paper demonstrates the capability of the moment relaxations to globally solve large OPF problems that minimize active power losses for portions of several European power systems. Large problems with more general objective functions have thus far been computationally intractable for current formulations of the moment relaxations. To overcome this limitation, this paper proposes the combination of an objective function penalization with the moment relaxations. This combination yields feasible points with objective function values that are close to the global optimum of several large OPF problems. Compared to an existing penalization method, the combination of penalization and the moment relaxations eliminates the need to specify one of the penalty parameters and solves a broader class of problems.Comment: 8 pages, 1 figure, to appear in IEEE 54th Annual Conference on Decision and Control (CDC), 15-18 December 201

    Minimum-cost multicast over coded packet networks

    Get PDF
    We consider the problem of establishing minimum-cost multicast connections over coded packet networks, i.e., packet networks where the contents of outgoing packets are arbitrary, causal functions of the contents of received packets. We consider both wireline and wireless packet networks as well as both static multicast (where membership of the multicast group remains constant for the duration of the connection) and dynamic multicast (where membership of the multicast group changes in time, with nodes joining and leaving the group). For static multicast, we reduce the problem to a polynomial-time solvable optimization problem, and we present decentralized algorithms for solving it. These algorithms, when coupled with existing decentralized schemes for constructing network codes, yield a fully decentralized approach for achieving minimum-cost multicast. By contrast, establishing minimum-cost static multicast connections over routed packet networks is a very difficult problem even using centralized computation, except in the special cases of unicast and broadcast connections. For dynamic multicast, we reduce the problem to a dynamic programming problem and apply the theory of dynamic programming to suggest how it may be solved

    Convex Relaxation of Optimal Power Flow, Part II: Exactness

    Get PDF
    This tutorial summarizes recent advances in the convex relaxation of the optimal power flow (OPF) problem, focusing on structural properties rather than algorithms. Part I presents two power flow models, formulates OPF and their relaxations in each model, and proves equivalence relations among them. Part II presents sufficient conditions under which the convex relaxations are exact.Comment: Citation: IEEE Transactions on Control of Network Systems, June 2014. This is an extended version with Appendex VI that proves the main results in this tutoria
    • …
    corecore