316 research outputs found

    Mobile Device Background Sensors: Authentication vs Privacy

    Get PDF
    The increasing number of mobile devices in recent years has caused the collection of a large amount of personal information that needs to be protected. To this aim, behavioural biometrics has become very popular. But, what is the discriminative power of mobile behavioural biometrics in real scenarios? With the success of Deep Learning (DL), architectures based on Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), such as Long Short-Term Memory (LSTM), have shown improvements compared to traditional machine learning methods. However, these DL architectures still have limitations that need to be addressed. In response, new DL architectures like Transformers have emerged. The question is, can these new Transformers outperform previous biometric approaches? To answers to these questions, this thesis focuses on behavioural biometric authentication with data acquired from mobile background sensors (i.e., accelerometers and gyroscopes). In addition, to the best of our knowledge, this is the first thesis that explores and proposes novel behavioural biometric systems based on Transformers, achieving state-of-the-art results in gait, swipe, and keystroke biometrics. The adoption of biometrics requires a balance between security and privacy. Biometric modalities provide a unique and inherently personal approach for authentication. Nevertheless, biometrics also give rise to concerns regarding the invasion of personal privacy. According to the General Data Protection Regulation (GDPR) introduced by the European Union, personal data such as biometric data are sensitive and must be used and protected properly. This thesis analyses the impact of sensitive data in the performance of biometric systems and proposes a novel unsupervised privacy-preserving approach. The research conducted in this thesis makes significant contributions, including: i) a comprehensive review of the privacy vulnerabilities of mobile device sensors, covering metrics for quantifying privacy in relation to sensitive data, along with protection methods for safeguarding sensitive information; ii) an analysis of authentication systems for behavioural biometrics on mobile devices (i.e., gait, swipe, and keystroke), being the first thesis that explores the potential of Transformers for behavioural biometrics, introducing novel architectures that outperform the state of the art; and iii) a novel privacy-preserving approach for mobile biometric gait verification using unsupervised learning techniques, ensuring the protection of sensitive data during the verification process

    DeVoS: Deniable Yet Verifiable Vote Updating

    Get PDF
    peer reviewedInternet voting systems are supposed to meet the same high standards as traditional paper-based systems when used in real political elections: freedom of choice, universal and equal suffrage, secrecy of the ballot, and independent verifiability of the election result. Although numerous Internet voting systems have been proposed to achieve these challenging goals simultaneously, few come close in reality. We propose a novel publicly verifiable and practically efficient Internet voting system, DeVoS, that advances the state of the art. The main feature of DeVoS is its ability to protect voters' freedom of choice in several dimensions. First, voters in DeVoS can intuitively update their votes in a way that is deniable to observers but verifiable by the voters; in this way voters can secretly overwrite potentially coerced votes. Second, in addition to (basic) vote privacy, DeVoS also guarantees strong participation privacy by end-to-end hiding which voters have submitted ballots and which have not. Finally, DeVoS is fully compatible with Perfectly Private Audit Trail, a state-of-the-art Internet voting protocol with practical everlasting privacy. In combination, DeVoS offers a new way to secure free Internet elections with strong and long-term privacy properties

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Blockchain-Coordinated Frameworks for Scalable and Secure Supply Chain Networks

    Full text link
    Supply chains have progressed through time from being limited to a few regional traders to becoming complicated business networks. As a result, supply chain management systems now rely significantly on the digital revolution for the privacy and security of data. Due to key qualities of blockchain, such as transparency, immutability and decentralization, it has recently gained a lot of interest as a way to solve security, privacy and scalability problems in supply chains. However conventional blockchains are not appropriate for supply chain ecosystems because they are computationally costly, have a limited potential to scale and fail to provide trust. Consequently, due to limitations with a lack of trust and coordination, supply chains tend to fail to foster trust among the network’s participants. Assuring data privacy in a supply chain ecosystem is another challenge. If information is being shared with a large number of participants without establishing data privacy, access control risks arise in the network. Protecting data privacy is a concern when sending corporate data, including locations, manufacturing supplies and demand information. The third challenge in supply chain management is scalability, which continues to be a significant barrier to adoption. As the amount of transactions in a supply chain tends to increase along with the number of nodes in a network. So scalability is essential for blockchain adoption in supply chain networks. This thesis seeks to address the challenges of privacy, scalability and trust by providing frameworks for how to effectively combine blockchains with supply chains. This thesis makes four novel contributions. It first develops a blockchain-based framework with Attribute-Based Access Control (ABAC) model to assure data privacy by adopting a distributed framework to enable fine grained, dynamic access control management for supply chain management. To solve the data privacy challenge, AccessChain is developed. This proposed AccessChain model has two types of ledgers in the system: local and global. Local ledgers are used to store business contracts between stakeholders and the ABAC model management, whereas the global ledger is used to record transaction data. AccessChain can enable decentralized, fine-grained and dynamic access control management in SCM when combined with the ABAC model and blockchain technology (BCT). The framework enables a systematic approach that advantages the supply chain, and the experiments yield convincing results. Furthermore, the results of performance monitoring shows that AccessChain’s response time with four local ledgers is acceptable, and therefore it provides significantly greater scalability. Next, a framework for reducing the bullwhip effect (BWE) in SCM is proposed. The framework also focuses on combining data visibility with trust. BWE is first observed in SC and then a blockchain architecture design is used to minimize it. Full sharing of demand data has been shown to help improve the robustness of overall performance in a multiechelon SC environment, especially for BWE mitigation and cumulative cost reduction. It is observed that when it comes to providing access to data, information sharing using a blockchain has some obvious benefits in a supply chain. Furthermore, when data sharing is distributed, parties in the supply chain will have fair access to other parties’ data, even though they are farther downstream. Sharing customer demand is important in a supply chain to enhance decision-making, reduce costs and promote the final end product. This work also explores the ability of BCT as a solution in a distributed ledger approach to create a trust-enhanced environment where trust is established so that stakeholders can share their information effectively. To provide visibility and coordination along with a blockchain consensus process, a new consensus algorithm, namely Reputation-based proof-of cooperation (RPoC), is proposed for blockchain-based SCM, which does not involve validators to solve any mathematical puzzle before storing a new block. The RPoC algorithm is an efficient and scalable consensus algorithm that selects the consensus node dynamically and permits a large number of nodes to participate in the consensus process. The algorithm decreases the workload on individual nodes while increasing consensus performance by allocating the transaction verification process to specific nodes. Through extensive theoretical analyses and experimentation, the suitability of the proposed algorithm is well grounded in terms of scalability and efficiency. The thesis concludes with a blockchain-enabled framework that addresses the issue of preserving privacy and security for an open-bid auction system. This work implements a bid management system in a private BC environment to provide a secure bidding scheme. The novelty of this framework derives from an enhanced approach for integrating BC structures by replacing the original chain structure with a tree structure. Throughout the online world, user privacy is a primary concern, because the electronic environment enables the collection of personal data. Hence a suitable cryptographic protocol for an open-bid auction atop BC is proposed. Here the primary aim is to achieve security and privacy with greater efficiency, which largely depends on the effectiveness of the encryption algorithms used by BC. Essentially this work considers Elliptic Curve Cryptography (ECC) and a dynamic cryptographic accumulator encryption algorithm to enhance security between auctioneer and bidder. The proposed e-bidding scheme and the findings from this study should foster the further growth of BC strategies

    A New Right is the Wrong Tactic: Bring Legal Actions Against States for Internet Shutdowns Instead of Working Towards a Human Right to the Internet (Part 1)

    Get PDF
    A New Right is the Wrong Tactic: Bring Legal Actions Against States for Internet Shutdowns Instead of Working Towards a Human Right to the Internet (Part 1) is the first of a two-part series dealing with an increasingly prevalent threat to human rights: State-sanctioned Internet shutdowns. Part 1 details the current tactics and impacts of Internet shutdowns and which human rights are most likely to be violated by or during a shutdown. Part 2 will address the deficiencies of advocating for Internet access to be a recognized human right as a means of combatting shutdowns. Despite the popularity of this proposed solution, the harms of Internet shutdowns are better addressed through traditional legal avenues, such as bringing claims against the sanctioning state

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Federated Learning for Medical Image Analysis: A Survey

    Full text link
    Machine learning in medical imaging often faces a fundamental dilemma, namely the small sample size problem. Many recent studies suggest using multi-domain data pooled from different acquisition sites/datasets to improve statistical power. However, medical images from different sites cannot be easily shared to build large datasets for model training due to privacy protection reasons. As a promising solution, federated learning, which enables collaborative training of machine learning models based on data from different sites without cross-site data sharing, has attracted considerable attention recently. In this paper, we conduct a comprehensive survey of the recent development of federated learning methods in medical image analysis. We first introduce the background and motivation of federated learning for dealing with privacy protection and collaborative learning issues in medical imaging. We then present a comprehensive review of recent advances in federated learning methods for medical image analysis. Specifically, existing methods are categorized based on three critical aspects of a federated learning system, including client end, server end, and communication techniques. In each category, we summarize the existing federated learning methods according to specific research problems in medical image analysis and also provide insights into the motivations of different approaches. In addition, we provide a review of existing benchmark medical imaging datasets and software platforms for current federated learning research. We also conduct an experimental study to empirically evaluate typical federated learning methods for medical image analysis. This survey can help to better understand the current research status, challenges and potential research opportunities in this promising research field.Comment: 19 pages, 6 figure

    Preserving user privacy in social media data processing

    Get PDF
    Social media data is used for analytics, e.g., in science, authorities or the industry. Privacy is often considered a secondary problem. However, protecting the privacy of social media users is demanded by laws and ethics. In order to prevent subsequent abuse, theft or public exposure of collected datasets, privacy-aware data processing is crucial. This dissertation presents a concept to process social media data with social media user’s privacy in mind. It features a data storage concept based on the cardinality estimator HyperLogLog to store social media data, so that it is not possible to extract individual items from it, but only to estimate the cardinality of items within a certain set, plus running set operations over multiple sets to extend analytical ranges. Applying this method requires to define the scope of the result before even gathering the data. This prevents the data from being misused for other purposes at a later point in time and thus follows the privacy by design principles. This work further shows methods to increase privacy through the implementation of abstraction layers. An included case study demonstrates the presented methods to be suitable for application in the field.:1 Introduction 1.1 Problem 1.2 Research objectives 1.3 Document structure 2 Related work 2.1 The notion of privacy 2.2 Privacy by design 2.3 Differential privacy 2.4 Geoprivacy 2.5 Probabilistic Data Structures 3 Concept and methods 3.1 Collateral data 3.2 Disposable data 3.3 Cardinality estimation 3.4 Data precision 3.5 Extendability 3.6 Abstraction 3.7 Time consideration 4 Summary of publications 4.1 HyperLogLog Introduction 4.2 VOST Case Study 4.3 Real-time Streaming 4.4 Abstraction Layers 4.5 VGIscience Book Chapter 4.6 Supplementary Software Materials 5 Discussion 5.1 Prevent accidental data disclosure 5.2 Feasibility in the field 5.3 Adjustability for different use cases 5.4 Limitations of HLL 5.5 Security 5.6 Outlook and further research 6 Conclusion Appendix References Publication

    Security and Privacy on Generative Data in AIGC: A Survey

    Full text link
    The advent of artificial intelligence-generated content (AIGC) represents a pivotal moment in the evolution of information technology. With AIGC, it can be effortless to generate high-quality data that is challenging for the public to distinguish. Nevertheless, the proliferation of generative data across cyberspace brings security and privacy issues, including privacy leakages of individuals and media forgery for fraudulent purposes. Consequently, both academia and industry begin to emphasize the trustworthiness of generative data, successively providing a series of countermeasures for security and privacy. In this survey, we systematically review the security and privacy on generative data in AIGC, particularly for the first time analyzing them from the perspective of information security properties. Specifically, we reveal the successful experiences of state-of-the-art countermeasures in terms of the foundational properties of privacy, controllability, authenticity, and compliance, respectively. Finally, we summarize the open challenges and potential exploration directions from each of theses properties

    A comprehensive survey of V2X cybersecurity mechanisms and future research paths

    Get PDF
    Recent advancements in vehicle-to-everything (V2X) communication have notably improved existing transport systems by enabling increased connectivity and driving autonomy levels. The remarkable benefits of V2X connectivity come inadvertently with challenges which involve security vulnerabilities and breaches. Addressing security concerns is essential for seamless and safe operation of mission-critical V2X use cases. This paper surveys current literature on V2X security and provides a systematic and comprehensive review of the most relevant security enhancements to date. An in-depth classification of V2X attacks is first performed according to key security and privacy requirements. Our methodology resumes with a taxonomy of security mechanisms based on their proactive/reactive defensive approach, which helps identify strengths and limitations of state-of-the-art countermeasures for V2X attacks. In addition, this paper delves into the potential of emerging security approaches leveraging artificial intelligence tools to meet security objectives. Promising data-driven solutions tailored to tackle security, privacy and trust issues are thoroughly discussed along with new threat vectors introduced inevitably by these enablers. The lessons learned from the detailed review of existing works are also compiled and highlighted. We conclude this survey with a structured synthesis of open challenges and future research directions to foster contributions in this prominent field.This work is supported by the H2020-INSPIRE-5Gplus project (under Grant agreement No. 871808), the ”Ministerio de Asuntos Económicos y Transformacion Digital” and the European Union-NextGenerationEU in the frameworks of the ”Plan de Recuperación, Transformación y Resiliencia” and of the ”Mecanismo de Recuperación y Resiliencia” under references TSI-063000-2021-39/40/41, and the CHIST-ERA-17-BDSI-003 FIREMAN project funded by the Spanish National Foundation (Grant PCI2019-103780).Peer ReviewedPostprint (published version
    • …
    corecore