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1. INTRODUCTION
Privacy is a fundamental human right codified in the United Nations Universal Dec-
laration of Human Rights, which states that “no one shall be subjected to arbitrary
interference with his privacy, family, home or correspondence” [United Nations 1948,
Art. 12]. However, it is difficult to define what exactly privacy is. As early as 1967,
Westin [1967] defined privacy as “the ability of an individual to control the terms under
which personal information is acquired and used.” Personal information, according to
the EU General Data Protection Regulation (and the OECD privacy framework [OECD
2013]), is “any information relating to an [...] identifiable natural person” [European
Parliament & Council 2016].

Nissenbaum [2004] makes these definitions more practical and defines privacy in
terms of contextual integrity, where information is associated with a specific context
(e.g., a hospital visit), and social norms for this context dictate how information may be
used or shared. A privacy violation is then the use of personal information other than
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the norm allows. Although contextual integrity clearly defines when a privacy violation
has occurred, it provides no protection mechanism other than policy and regulations.

Privacy-enhancing technologies (PETs) protect privacy based on technology rather
than policy, and can thus offer much stronger protection. To judge the efficacy of PETs,
privacy metrics are needed that can measure the level of privacy in a system, or the
privacy provided by a given PET. A technical privacy metric takes properties of a system
as an input (e.g., the amount of sensitive information leaked or the number of users
who are indistinguishable with respect to some characteristic) and yields a numerical
(or sometimes canonical) value, which allows to quantify the privacy level in a system
and subsequently the comparison of different PETs. Equally, the parameters of some
privacy methods can be regarded as privacy metrics, e.g. the k in k-anonymity (see
Section 5.3.1). Privacy metrics can be used in different contexts (or domains), and they
can differ with regard to the kind of adversary they consider, the data sources they
assume to be available to the adversary, and the aspects of privacy they measure.

Despite the large number of metrics in the literature, a structured and comprehensive
overview of privacy metrics does not yet exist. This makes informed decisions about
which metrics to select for the evaluation of PETs difficult. This in turn can lead to the
choice of ineffective PETs, which is worrisome considering the pervasiveness of systems
that can violate privacy [Eckhoff and Wagner 2017]. In this paper, we structure the
landscape of privacy metrics, focusing on technical metrics that measure the degree
of privacy in a system or the effectiveness of PETs. In detail, our contributions are as
follows:

— We review conditions for the quality of privacy metrics (Section 2). These are essential
as a basis for an informed decision about privacy metrics.

— We describe a selection of privacy domains including communication systems and
databases to provide context and examples throughout the survey (Section 3).

— We identify four common characteristics that can classify privacy metrics (Section 4):
— Adversary models describe the capabilities the adversary is assumed to have.
— Data sources describe how the adversary might obtain the information a PET aims

to protect: from public data, observable data, re-purposed data, or other sources.
— Inputs describe what information is used to compute a metric: the adversary’s

estimate, resources available to the adversary, the true outcome, prior knowledge,
and parameters.

— Output measures describe the properties that are measured by privacy metrics.
Our taxonomy introduces eight categories: a) uncertainty, b) information gain or
loss, c) data similarity, d) indistinguishability, e) adversary’s success probability, f)
error, g) time, and h) accuracy/precision.

— We describe and classify over eighty privacy metrics in Section 5. We focus our selection
on popular metrics (in terms of citations) and metrics we found conceptually promising.
Where possible, we unify and simplify metric notation and, when appropriate, we
discuss advantages and disadvantages of metrics as well as application scenarios.

— We give recommendations on how to choose privacy metrics in Section 6. We structure
our recommendations along a series of questions, answers to which will highlight
particularly suitable metrics and narrow down the number of candidates.

— We identify areas for future work in Section 7. In particular, we believe that more
work is needed on metrics for interdependent privacy, combinations of metrics, and
evaluations of the quality of metrics.

In summary, we systematize the literature on privacy measurement. Our survey
can thus serve as a reference guide for privacy metrics and as a framework that
enables privacy researchers to make informed decisions on which metrics to choose
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in a particular setting. This will contribute to the advancement of PETs and privacy
protection in general.

2. CONDITIONS FOR PRIVACY METRICS
There is no general consensus which conditions privacy metrics have to fulfill. In the
mathematical sense, a metric is a measure for the distance between two elements of a
set and needs to fulfill four conditions to qualify as a metric (non-negativity, identity
of indiscernibles, symmetry, and triangle inequality). However, many of the metrics
discussed in this survey are not metrics in the mathematical sense, as they do not
fulfill all four conditions. Nevertheless, to remain consistent with the literature (e.g.,
[Bertino et al. 2008; Bezzi 2010; Clauß and Schiffner 2006; Chatzikokolakis et al. 2015;
Andersson and Lundin 2008; Kelly et al. 2008; Murdoch and Watson 2008]), we will
consider as privacy metrics all measures that in some way describe the level of privacy.

Many authors have proposed requirements and recommendations for privacy metrics.
For example, Alexander and Smith [2003] require that privacy metrics are understand-
able by mathematically inclined laypeople, are orthogonal to cost and utility metrics,
and give bounds on how effectively the adversary can succeed in identifying individuals.
Andersson and Lundin [2008] require that privacy metrics are based on probabilities
(e.g., the probability of an adversary identifying a given individual) and have well
defined and intuitive endpoints. They argue that a metric should measure privacy
based on the number of individuals an adversary cannot distinguish and how evenly
spread the adversary’s guesses are.

In contrast to that, Syverson [2013] requires that privacy metrics reflect how difficult
it is for an adversary to succeed, that they do not depend on variables that cannot
be determined or predicted, and that they reflect the resources needed for successful
attacks on privacy instead of relying on cardinalities or probabilities.

Bertino et al. [2008] require that privacy metrics indicate the privacy level, the
portion of sensitive data that is not hidden, and the data quality after application of
the PET. Shokri et al. [2011] require that privacy metrics consider three aspects of the
adversary’s success: accuracy, uncertainty, and correctness.

In an earlier publication, we required that privacy metrics should be monotone with
increasing adversary strength [Wagner 2017].

While the discussed conditions in this section cannot be seen as strict requirements
for a measure to qualify as a privacy metric, they can serve as a guideline to increase
the strength, usability, and meaningfulness of newly proposed metrics.

3. PRIVACY DOMAINS
Privacy domains are areas where privacy-enhancing technologies (PETs) can be applied.
With the increasing use of information technology, PETs are being researched in a
growing number of domains. Here, we describe six domains to provide context and
examples for the remainder of the paper.

3.1. Communication Systems
The main privacy challenge in communication systems is anonymous communication,
which aims to hide which (or even that) two users communicated, not just the contents
of their communication. Maintaining the confidentiality of communication contents
is an orthogonal problem that can be solved via public-key encryption [Chaum 1988].
Adversaries typically try to identify either the sender of a message, its receiver, or
sender-receiver relationships. Metrics for communication systems have been previously
reviewed by Kelly et al. [2008].
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3.2. Databases
There are two typical scenarios in the database domain: in the interactive setting,
users issue queries to a database; in the non-interactive setting, a sanitized database is
released to the public. In both scenarios, adversaries attempt to identify individuals in
the database and reveal sensitive attributes, for example, health information contained
in a patient record. Databases can include microdata (i.e., information about individuals)
or aggregate data that masks information about individuals, for example by presenting
only the averages of multiple values. Surveys that review metrics for this domain
include Fung et al. [2010], Shabtai et al. [2012], Xu et al. [2014] (privacy preserving
data publishing), Bertino et al. [2008] (data mining), and Kelly et al. [2008] (databases).

3.3. Location-based Services
Location-based services provide context-aware services to mobile users, such as infor-
mation about nearby points of interest. Adversaries with access to location information
can infer sensitive attributes like home and work locations, and create movement
profiles that can be sold or used for marketing purposes. Metrics for location privacy
are discussed by Shokri et al. [2010] and Krumm [2009]. In previous work, we reviewed
metrics for vehicular networks [Wagner and Eckhoff 2014].

3.4. Smart Metering
Smart meters record fine-grained electricity consumption data in a user’s home and send
this data to the energy provider. The energy provider can use this data for billing and
network optimization, but can also act as an adversary who infers behavioral profiles
above and beyond the stated purpose. Metrics and mechanisms for smart metering are
reviewed by Zeadally et al. [2013].

3.5. Social Networks
Social networks allow users to share updates about their daily lives. Adversaries in this
domain try to identify users in anonymized social graphs, or infer sensitive attributes
from private profiles. Yang et al. [2012] survey privacy risks in social networks.

3.6. Genome Privacy
Advances in whole genome sequencing have raised new questions regarding the privacy
of a person’s genome. The genome uniquely identifies an individual, and at the same
time reveals highly sensitive information, like susceptibility to diseases. An adversary
with access to genomic data could engage in genetic discrimination (e.g., denial of
insurance) or blackmail (e.g., planting fake evidence at crime scenes). In previous work,
we reviewed privacy metrics for genomics [Wagner 2015].

4. CHARACTERISTICS OF PRIVACY METRICS
Despite their diversity, privacy metrics share common characteristics. Here, we de-
scribe four characteristics that can classify privacy metrics and can thus serve as an
initial guideline for choosing privacy metrics for specific scenarios (we give detailed
recommendations in Section 6).

4.1. Adversary Goals
The goal of privacy metrics is to quantify the level of privacy in a system or the privacy
provided by a PET, often under consideration of a specific adversary. The adversary
aims to compromise users’ privacy and to learn sensitive information. This sensitive
information can be user identities (e.g. by deanonymizing data sets), user properties (e.g.
location or energy consumption), or both [Heurix et al. 2015]. It is therefore important
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to select metrics that are able to measure the relevant aspect. For example, a metric in
location-based services can indicate whether the adversary can identify a user, given
a location (identity hiding), or whether the adversary can identify the location, given
a user (property hiding). We indicate which metrics are suitable to measure identity
or property hiding in Tables X and XI (pages 33 and 34, column Identity/Property).
The distinction between identity and property hiding can be blurry because it depends
on the adversary and the employed PET, and because metrics that were originally
proposed for one setting are often applied in other settings as well. Therefore, a missing
entry in Tables X and XI does not necessarily mean that a metric cannot be applied,
only that, to the best of our knowledge, no research has done so.

4.2. Adversary Capabilities
Naturally, a stronger adversary, such as one with more resources or prior knowledge,
might be able to attack privacy more successfully. The value of a privacy metric therefore
depends on the adversary model, and evaluating a PET with a weak adversary model
can lead to an overestimation of privacy. Essentially, PETs that provide protection
against a stronger adversary model can give stronger privacy guarantees. As a result,
metrics can only be used to compare two different PETs if they use the same adversary
model.

Metrics that do not account for any type of adversary implicitly assume an adversary
with limited capabilities. For example, metrics that measure privacy purely based on
certain properties of data assume that every attack on the system will only rely on these
properties. Attacks that exploit other properties of the data may be able to disclose
sensitive information nevertheless.

The literature reflects the importance of adversary models by considering adversaries
with diverse characteristics. To allow for a better interpretation of the outcome of privacy
metrics, studies should always include a detailed description of the used adversary
model. To this end, we extend the taxonomy of adversary types described by Diaz et al.
[2003] (and later refined in Diaz [2006]), and classify adversaries as follows:

4.2.1. Local–Global. Local adversaries can only act on a restricted part of the system,
for example a geographical location or a subset of nodes. Global adversaries have access
to the entire system.

4.2.2. Active–Passive. Active adversaries can interfere with the system by adding, re-
moving or modifying information or communication. Passive adversaries can only read
and observe.

4.2.3. Internal–External. Internal adversaries are part of the system, for example servers
providing location-based services, energy providers in smart metering, or third parties
controlling nodes in the system. External adversaries are not part of the system, but
are able to attack it, e.g., via shared communication links or publicly available data.

4.2.4. Static–Adaptive. Static adversaries choose which strategy and resources to use
prior to an attack and stick to their choice irrespective of how the attack progresses.
Adaptive adversaries can adapt their strategy while the attack is ongoing, e.g., by
learning system parameters through observation.

4.2.5. Prior Knowledge. Some adversaries may have additional knowledge about the
system, such as general domain-specific knowledge – knowledge about the world – or
scenario-specific knowledge, for example in the form of a prior probability distribution or
specific information about users in the system, such as their home and work addresses.
Prior information can considerably strengthen the adversary, and thus it is important
that privacy metrics can account for it.
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4.2.6. Resources. Adversaries can also be classified according to the resources available
to them. For computational resources, efficient adversaries are restricted to probabilistic
polynomial time (PPT) algorithms, while unbounded adversaries are not restricted to
any computational model. Other types of resources include the bandwidth or number of
malicious nodes available to the adversary [Murdoch 2013].

4.3. Data Sources
Data sources describe which data needs to be protected, and how the adversary is
assumed to gain access to the data. We indicate the primary data sources for each
metric in Tables X and XI (pages 33 and 34, column Primary data source).

4.3.1. Published Data. Published data refers to information that has been willingly and
persistently made available to the public. This includes statistical databases as well
as information individuals choose to disclose, e.g., on social networks. In both cases,
adversaries attempt to identify anonymized individuals or reveal sensitive attributes.

4.3.2. Observable Data. Observable data is transient information that requires the
adversary to be present in order to gain access to it. This category includes information
that can be obtained by a passive adversary who can access data without compromising
the underlying system. In communication systems, for example, adversaries overhear
communications to identify message senders and receivers.

4.3.3. Re-purposed Data. Re-purposed data is used for a different purpose than the
purpose for which it was initially acquired. Examples are service providers who obtain
user information to offer location-based services, smart metering, or social networks,
but then use this information for purposes other than providing the service. Having
access to non-public user information (regardless of the users’ privacy setting) allows
for tailored advertising and other forms of marketing or monetization.

4.3.4. All Other Data. All other data refers to information that was not made public,
was not observable and that the adversary was not intended to have access to. This
data is typically not anonymized or protected, and can be obtained using methods
such as wiretapping, hacking into a system, blackmailing, or buying off the black
market. Implications for users can be severe, including financial losses and publication
of medical records or confidential communication. PETs are often not deployed by the
original owner as they can make it less convenient to work with the data.

4.4. Inputs for Computation of Metrics
Privacy metrics rely on different kinds of input data to compute privacy values. The
availability of input data or appropriate assumptions determine whether a metric can
be used in a specific scenario. We indicate which of the input categories each metric
relies on in Tables X and XI (column group Inputs).

4.4.1. Adversary’s Estimate. The adversary’s estimate is the result of the adversary’s
effort to breach privacy. It often takes the form of a posterior probability distribution.
For example, in a communication system the estimate can describe how likely each
user is to have sent a message. In smart metering, the estimate can describe how much
energy a user is likely to have consumed during a specific time period.

4.4.2. Adversary’s Resources. The resources available to the adversary can be given,
for example, in terms of computational power, time, bandwidth, or physical nodes (see
Section 4.2.6).

4.4.3. True Outcome. The true outcome, or ground truth, is often used to judge how
good the adversary’s estimate is. However, this information is not available to the
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adversary, so they cannot compute metrics that use the true outcome. For example, in
location-based services the true outcome corresponds to a user’s true location, and in
social networks it corresponds to the true connections in a social graph. The ground
truth is usually assumed to describe sensitive data.

4.4.4. Prior Knowledge. Prior knowledge describes concrete, scenario-specific knowledge
that the adversary has. It usually takes the form of a prior probability distribution.
In genome privacy, for example, prior knowledge can include information about a
user’s population group, which influences how likely a user is to have specific genetic
variations.

4.4.5. Parameters. Parameters configure privacy metrics. They describe threshold val-
ues, the sensitivity of attributes, which attributes are sensitive, or desired privacy
levels.

4.5. Output Measures
The output of a privacy metric refers to the kind of property that a privacy metric mea-
sures. We introduce a taxonomy with eight output properties, each of which represents
a different aspect of privacy. This is an important categorization because it shows that
a single metric cannot capture the entire concept of privacy. A more complete estimate
of privacy can only be obtained by using metrics from different output categories.

Figure 1 gives an overview of the output measures and the metrics associated with
each.

While there exist many possible categorizations for metrics, e.g., based on domain or
data source, we believe that a classification based on the output is the most intuitive.
We note that, as for any classification, the boundaries between categories can be
blurred and some metrics could also be assigned to other categories. For example, Bezzi
[2010] describe metrics from the data similarity category in terms of metrics from
the uncertainty and information gain/loss categories, and Soria-Comas and Domingo-
Ferrer [2013] showed that data similarity metrics can be related with metrics from the
indistinguishability category. In this survey, we assigned metrics to the output which
they seem to measure the most directly.

4.5.1. Uncertainty. Uncertainty metrics assume that high uncertainty in the adversary’s
estimate correlates with high privacy, because the adversary cannot base his guesses
on information known with certainty. However, even guesses based on uncertain in-
formation can be correct, and thus individual users may suffer privacy losses even in
scenarios with a highly uncertain adversary.

4.5.2. Information Gain or Loss. Metrics that measure information gain or loss quantify
the amount of information gained by the adversary, or the amount of privacy lost by
users due to the disclosure of information.

4.5.3. Data Similarity. Data similarity metrics measure similarity either within a dataset,
for example by forming equivalence classes, or between two sets of data, for example
between a private dataset and its public, sanitized counterpart. These metrics abstract
away from an adversary and focus on the properties of the data. For example, similarity
can refer to the frequencies of data values, numerical similarity, or the (lack of) variation
in published data.

4.5.4. Indistinguishability. Indistinguishability is a classic notion in the security com-
munity. Metrics based on indistinguishability analyze whether the adversary is able
to distinguish between two outcomes of a privacy mechanism. Privacy is high if the
adversary cannot distinguish between any pair of outcomes. Metrics in this category
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Fig. 1. Taxonomy of privacy metrics, classified by output

are usually binary; they indicate whether two outcomes are indistinguishable or not,
but do not quantify the privacy levels in-between.

4.5.5. Adversary’s Success Probability. Metrics using the adversary’s success probability
to quantify privacy indicate how likely it is for the adversary to succeed in any one
attempt, or how often they would succeed in a large number of attempts. Low success
probabilities correlate with high privacy. While this assumption holds for an averaged
population of users, an individual user may still suffer a loss of privacy even when the
adversary’s success probability is low.
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4.5.6. Error. Error-based metrics measure how correct the adversary’s estimate is,
for example using the distance between the true outcome and the estimate. High
correctness and small errors correlate with low privacy.

4.5.7. Time. Time-based metrics either measure the time until the adversary’s success,
or the time until the adversary’s confusion. In the first case, metrics assume that the
adversary will succeed eventually, and so a longer time correlates with higher privacy.
In the second case, metrics assume that the privacy mechanism will eventually confuse
the adversary, and so a shorter time correlates with higher privacy.

4.5.8. Accuracy or Precision. Accuracy metrics quantify how precise the adversary’s
estimate is without considering the estimate’s correctness. A more precise estimate
correlates with lower privacy.

5. PRIVACY METRICS
We now describe over eighty privacy metrics from the literature, grouped by the outputs
they measure1. Where possible, we point out their advantages or disadvantages, point
out similarities or differences between related metrics, and give examples for application
scenarios. We also simplify and unify metric notation (see Table I), however, we did not
alter notation that occurs in a metric’s name (e.g., t-closeness or pX,Y q-Privacy).

At the end of the section, Tables X and XI summarize how each metric can be
classified according to the characteristics introduced in Section 4. The tables also
provide information about value ranges, and an indication whether higher or lower
values represent better privacy. We will refer to Tables X and XI again in Section 6,
when we give recommendations on how to select privacy metrics.

Table I. Unified notation for all privacy metrics in this paper

B Base metric
dpq Distance function
D Database or database table
E Equivalence class
Hp¨q Entropy
Ip¨; ¨q Mutual Information
K Privacy mechanism
L Locations
M Messages, requests
ppxq Equivalent to ppX “ xq
q Quasi-identifiers
R Regions
S Sensitive values or sets of query responses (differential privacy)
T Time
~T Time series
U Set of users u P U
V Genetic variations (or SNPs)
X Discrete random variable that represents the adversary’s estimated probabilities for each

member of the anonymity set
X˚ True distribution of (hidden) data
Y Data observed by the adversary (which may be obfuscated)
Z Prior information
βpq Loss function
τ Thresholds
ω Weights

1For the first read, we suggest to only focus on the first 2-3 metrics in each category. This will provide an
understanding of the most important metrics in each category as well as the differences between categories.
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5.1. Uncertainty
Uncertainty metrics assume that an adversary who is uncertain of his estimate cannot
breach privacy as effectively as one who is certain. Many uncertainty metrics build
on entropy, an information-theoretic notion to measure uncertainty [Shannon 1948].
Most metrics in this category originate from the communication domain, where, for
example, they can be used to assess an adversary’s uncertainty of associating different
users and messages. In location-based services, they have been applied to measure
the uncertainty of an adversary in associating a user with a location or to distinguish
between different users.

Table II. Metrics and references in the uncertainty category and the domains they originated in
Section Metric Original Domain Reference

5.1.1 Anonymity set size Communication [Chaum 1988]
5.1.2 Entropy Communication [Serjantov and Danezis 2002]
5.1.3 Rényi entropy Communication [Clauß and Schiffner 2006]
5.1.3 Max-entropy (Hartley) Communication [Clauß and Schiffner 2006]
5.1.3 Min-entropy Communication [Clauß and Schiffner 2006]
5.1.4 Normalized entropy Communication [Diaz et al. 2003]
5.1.5 Degree of unlinkability Communication [Steinbrecher and Köpsell 2003]
5.1.6 Quantiles on entropy Communication [Clauß and Schiffner 2006]
5.1.7 Conditional entropy Communication [Diaz et al. 2007]
5.1.8 Conditional privacy Databases [Agrawal and Aggarwal 2001]
5.1.8 Inherent privacy Databases [Agrawal and Aggarwal 2001]
5.1.9 Cross-entropy Databases [Merugu and Ghosh 2003]
5.1.10 Cumulative entropy Location [Freudiger et al. 2007]
5.1.11 Protection level Location [Xu and Cai 2009]
5.1.12 Asymmetric entropy Genome privacy [Ayday et al. 2013b]
5.1.13 Genomic privacy Genome privacy [Ayday et al. 2013a]
5.1.14 User-centric privacy Location [Freudiger et al. 2009]

5.1.1. Anonymity Set Size. The anonymity set for an individual u, denoted ASu is the set
of users that the adversary cannot distinguish from u. [Chaum 1988; Kesdogan et al.
1998]. It can be seen as the size of the crowd into which the target u can blend.

privASS ” |ASu|

Instead of users, anonymity sets can also be applied to locations [Duckham and Kulik
2005], location pairs (e.g., home/work) [Golle and Partridge 2009], or radio frequency
identification (RFID) devices [Heydt-Benjamin et al. 2006]. As a result of its simplicity,
the anonymity set size is widely used in the literature.

The main criticism of the anonymity set size is that it only depends on the number
of users in the system. This means that it does not take into account prior knowledge,
information the adversary has gathered by observing the system, or how likely each
member of the anonymity set is to be the target [Serjantov and Danezis 2002; Diaz
et al. 2003]. However, it can be argued that the size of the anonymity set is useful in
combination with other metrics such as normalized entropy (Section 5.1.4) [Steinbrecher
and Köpsell 2003].

5.1.2. Entropy. Shannon entropy is the basis for many other metrics. In general, entropy
measures the uncertainty associated with predicting the value of a random variable.
As a privacy metric, it can be interpreted as the effective size of the anonymity set,
or as the number of bits of additional information the adversary needs to identify a
user [Serjantov and Danezis 2002].

For example, the adversary may be interested in identifying which member of the
anonymity set took a specific action, e.g., who sent a particular message, or who visited
a particular location. The adversary would then estimate a probability ppxq for each
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member x of the anonymity set ASu which indicates the likelihood that x is the targeted
user u (ensuring that

ř

xPASu
ppxq “ 1). To use the entropy metric, it does not matter

how the adversary estimates ppxq. Attacks could, for example, be based on Bayesian
inference, random guessing, prior knowledge, or a combination of methods.

More generally, each value tx1, ..., xnu of the discrete random variable X represents a
member of the anonymity set and ppxiq is the (estimated) probability of this member to
be the target. Then, the entropy of X can be expressed as:

privENT ” HpXq “ ´
ÿ

xPX

ppxq log2 ppxq

Entropy has also been used in cases where privacy is measured at more than one
point in time, for example in location privacy, where the adversary tracks users during
a period of time. In this case, entropy is computed at every point in time, and the under-
lying probabilities are updated after each timestep using Bayesian belief tables [Ma
et al. 2010]. After the first timestep, this accounts for the prior knowledge the adversary
has acquired during previous timesteps.

Many papers argue against the use of entropy as a privacy metric. Entropy is strongly
influenced by outlier values, i.e., users in the anonymity set that are very unlikely to be
the target [Clauß and Schiffner 2006]. Even if an adversary is able to identify a target
with high probability, the remaining low probability members of the anonymity set can
still lead to high values of entropy and thus indicate high privacy [Tóth et al. 2004]. It
is easy to construct different probability distributions that yield the same entropy value,
for example a uniform distribution over 20 users, and an almost uniform distribution
over 101 users where one user has a probability of 1

2 [Tóth et al. 2004; Murdoch 2013].
This makes it difficult to compare different systems.

In the case of location privacy, entropy measures how well an adversary can disclose
the position of a user. However, if two positions are very close to each other, locations
may be revealed despite high entropy [Hoh and Gruteser 2005].

Although entropy has an intuitive interpretation as the number of additional bits of
information the adversary needs, it can be argued that the absolute value of entropy
does not convey much meaning [Hamel et al. 2011]. Entropy gives an indication of
the adversary’s uncertainty, but does not state how correct or accurate the adversary’s
estimates are [Shokri et al. 2011]. For example, the adversary could be certain but wrong
(low correctness) if the estimate indicates that the wrong member of the anonymity
set is the target. The adversary could also be certain but with low accuracy if the
confidence intervals for the estimated probabilities are very large. Low certainty is
usually correlated with low correctness, but otherwise, correctness and certainty are
not correlated [Shokri et al. 2011]. Entropy also does not indicate how many resources
(e.g. in terms of computation or bandwidth, see Section 4.2.6) the adversary has to
expend to succeed [Syverson 2013; Murdoch and Watson 2008].

5.1.3. Rényi Entropy. Rényi entropy is a generalization of Shannon entropy that also
quantifies the uncertainty in a random variable. It uses an additional parameter α, and
Shannon entropy is the special case with αÑ 1.

privRE ” HαpXq “
1

1´ α
log2

ÿ

xPX

ppxqα

Hartley entropy H0 or max-entropy is the special case with α “ 0. It depends only
on the number of users and is therefore a best-case scenario because it represents the
ideal privacy situation for a user. Min-entropy H8 is the special case with α “ 8 which
is a worst-case scenario because it only depends on the user for whom the adversary
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has the highest probability [Clauß and Schiffner 2006].

privMXE ” H0pXq “ log2 |X| “ log2 privASS

privMNE ” H8pXq “ ´ log2 max
xPX

ppxq

5.1.4. Normalized Entropy (Degree of Anonymity). Because the value range of entropy
depends on the number of elements in the anonymity set, the absolute value cannot
always be used to compare entropy values. This is why entropy is frequently normalized
using Hartley entropy (i.e., the maximum value entropy takes when all elements in
the anonymity set are equally likely). Normalized entropy can be interpreted as the
amount of information the system is leaking [Diaz et al. 2003].

privNE ”
HpXq

H0pXq

5.1.5. (Degree of) Unlinkability. Unlinkability measures the adversary’s uncertainty about
which items are related, for example which users are related by anonymous commu-
nication. In this case, the adversary does not assign probabilities to members of the
anonymity set, but to the relationships between them. The set of partitions Π of users
U contains all possible relationships. Unlinkability is then computed as the entropy
over the set of partitions Π [Steinbrecher and Köpsell 2003].

privDUE ” HpΠq “ ´
ÿ

πPΠ

ppπq log2 ppπq

The degree of unlinkability takes into account the prior knowledge of an adversary by
computing the ratio of unlinkability for an adversary with (HpΠZq) and without (HpΠq)
prior knowledge [Franz et al. 2007].

privDUP ”
HpΠZq

HpΠq

Using a ratio to compute the degree of unlinkability makes sure that the values
represent the degree of unlinkability, i.e., the metric is in the range r0, 1s, and indicates
the portion of unlinkability that remains even if the adversary has prior knowledge.
Other options to account for prior information are taking the difference (see increase in
adversary’s belief, Section 5.2.12) or the conditional entropy (see Section 5.1.7).

5.1.6. Quantiles on Entropy. Quantiles on entropy compute the entropy of a chosen
percentile of the random variable X. To account for the fact that entropy is strongly
influenced by outlier values and to avoid overestimating the level of privacy, this metric
ignores all members x P X whose assigned probability ppxq is smaller than the threshold
τ [Clauß and Schiffner 2006].

privQE ” HpX̂q, where X̂ “ tx : x P X, ppxq ě τu

5.1.7. Conditional Entropy. The conditional entropy, or equivocation, of a random variable
X˚, given a random variable Y , measures how much information is needed to describe
X˚ if the value of Y is known. The random variable X˚ represents the true distribution,
for example a sender’s true sending profile (in communications) or the true distribution
of a data attribute (in databases). Y can then be taken to describe the adversary’s
observations, for example information about messages in a communications network
[Diaz et al. 2007], or a perturbed data release [Agrawal and Aggarwal 2001]. However,
care must be taken to distinguish conditional entropy from the entropy of a conditional
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probability distribution [Diaz et al. 2007].

privCOE ” HpX˚|Y q “ ´
ÿ

yPY

ÿ

x˚PX˚

ppy, x˚q log2 ppx
˚|yq

Normalized conditional entropy uses the entropy of X˚ (because entropy is the
maximum of conditional entropy) to normalize conditional entropy [Lai et al. 2011].

privNCE ”
HpX˚|Y q

HpX˚q

5.1.8. Inherent Privacy. Inherent privacy (also called scaled anonymity set size) is de-
rived from entropy and describes the privacy inherent in the random variable X as
the number of possible outcomes given the expected amount of binary questions the
adversary needs to answer [Agrawal and Aggarwal 2001; Andersson and Lundin 2008].

privIP ” 2HpXq

In a similar way, conditional privacy is based on conditional entropy and measures
the privacy inherent in a random variable X, given random variable Y [Agrawal and
Aggarwal 2001].

privCP ” 2HpX|Y q

5.1.9. Cross-entropy / Likelihood. In data clustering, cross-entropy measures the uncer-
tainty in predicting the original dataset from the clustered model [Merugu and Ghosh
2003]. Generally, cross-entropy measures the amount of information needed to iden-
tify an object in the data set if the original data are coded in terms of the model’s
distribution X, rather than their true distribution X˚. Cross-entropy is derived from
entropy, which indicates the uncertainty in a probability distribution (Section 5.1.2),
and the relative entropy DKL, which indicates the distance between two probability
distributions (Section 5.2.2).

privCE ” HpX˚q `DKLpX
˚||Xq

5.1.10. Cumulative Entropy. In location privacy, cumulative entropy measures how much
entropy can be gathered on a route through a series of independent mix zones. A mix
zone R is a region where several nodes are close to each other at the same time, such
that the adversary cannot distinguish the nodes as they leave the mix zone in different
directions. Cumulative entropy adds up the entropy gathered in each mix zone r on a
node’s path [Freudiger et al. 2007]. Xr indicates the adversary’s estimate at the time
when the user is in mix zone r.

privCUE ”
ÿ

rPR

HpXrq

5.1.11. Protection Level. The protection level is a metric from location privacy which
is based on the popularity of regions r P R. The popularity of a region r with respect
to a set of users, Poppr, Uq, is defined as the inherent privacy (Section 5.1.8) computed
over the frequencies frU of location samples from all users in this region. A user u in the
system can specify a public reference region rref

u to define how private they want to be.
The protection level is then the ratio of the average popularity of all regions Ru along
the user’s trajectory (with respect to the set of users Û common to all these regions) and
the popularity of the reference region [Xu and Cai 2009]. A protection level of at least 1
indicates adequate protection.

privPL ”

ř

rPRu
Poppr, Ûq

|Ru|Popprref
u , Uq

, where Poppr, Uq “ 2Hpf
r
U q
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5.1.12. Asymmetric Entropy. When the adversary has access to prior information about
the distribution of the random variable X, the point α where uncertainty is highest can
differ from equiprobability. For example, in genomics, information about the population-
wide average probabilities of genetic variations are readily available and determine
where the adversary’s uncertainty is highest. In this case, asymmetric entropy can
be used instead of entropy to account for this prior information [Ayday et al. 2013b;
Marcellin et al. 2006]. Asymmetric entropy uses ppxq as the adversary’s probability of
inferring the target correctly, and does not take into account individual probabilities for
the other members of the anonymity set.

privAE ”
ppxqp1´ ppxqq

p´2α` 1qppxq ` α2

In genomic privacy, asymmetric entropy can be applied to each genetic variation sep-
arately (with separate parameters αi) and then summed up to give cumulative asymmetric
entropy (similar to cumulative entropy in Section 5.1.10).

5.1.13. Genomic Privacy. Genomic privacy assumes that the adversary has estimated
probabilities for all genetic variations V (so-called single nucleotide polymorphisms, or
SNPs) that occur in a person’s genome. Most SNPs have two variants, one of which is
less common than the other in human populations. The metric uses the probabilities
for the cases where a SNP v is present with the less common variant and weights these
probabilities with a rating ωv of each SNP’s severity, which indicates, for example, how
much a SNP contributes to a disease [Ayday et al. 2013a]. The value of genomic privacy
does not have an intuitive interpretation and depends strongly on the number of SNPs
studied and the magnitude of the severities.

privGP ” ´
ÿ

vPV

log2pppv has less common variantqq ¨ ωv

5.1.14. User-centric Privacy. User-centric privacy assumes that the privacy of a user
decreases linearly over time with speed ω. This decay can be expressed through the
privacy loss function βp∆tq, with ∆t being the time elapsed since t1, the time of the last
successful activation of a privacy protection mechanism [Freudiger et al. 2009]. This
metric makes use of a base privacy metric B, with Bt1 giving the level of privacy enjoyed
by the user at time t1. To avoid a negative level of privacy, the metric is capped at zero.
Note that for base metrics where lower values indicate higher privacy, the privacy loss
function βp∆tq has to be added to the base metric instead of subtracting it.

privUCP ” maxp0, Bt1 ´ βp∆tqq

βp∆tq “ ω ¨∆t, ∆t ě 0

User-centric privacy assumes a linear decay of privacy, which may not hold for all
base metrics. In addition, the metric assumes that successive activations of a privacy
mechanism are independent from each other.

5.2. Information Gain or Loss
Metrics in this category measure the amount of information an adversary can gain,
assuming that privacy is higher the less information an adversary can obtain. Similar
to uncertainty metrics, many information gain metrics are based on information theory.
However, information gain metrics explicitly consider the amount of prior information.

While frequently used in the context of communication systems or databases, metrics
in this category have found wide application across all domains, including genome
privacy, smart metering, and social networks.
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Table III. Metrics and references in the information gain/loss category and the domains they originated in
Section Metric Original Domain Reference

5.2.1 Amount of leaked information Social networks [Backstrom et al. 2007]
5.2.2 Relative entropy Communication [Deng et al. 2007]
5.2.3 Mutual information Genome privacy [Lin et al. 2002]
5.2.3 Normalized mutual information Genome privacy [Humbert et al. 2013]
5.2.4 Conditional privacy loss Databases [Agrawal and Aggarwal 2001]
5.2.5 Conditional mutual information Communication [Coble 2008]
5.2.6 (Relative) Loss of anonymity Communication [Chatzikokolakis et al. 2007]
5.2.7 Maximum information leakage Databases [du Pin Calmon and Fawaz 2012]
5.2.8 System anonymity level Communication [Gierlichs et al. 2008]
5.2.9 Information surprisal Social networks [Chen et al. 2013]
5.2.10 Privacy score Social networks [Liu and Terzi 2010]
5.2.11 Positive information disclosure Databases [Miklau and Suciu 2004]
5.2.12 Increase in adversary’s belief Databases [Narayanan and Shmatikov 2008]
5.2.13 Reduction in observable features Smart metering [McLaughlin et al. 2011]
5.2.14 Pearson’s correlation coefficient Smart metering [Kim et al. 2011]
5.2.15 Full/Partial disclosure Databases [Kenthapadi et al. 2005]

5.2.1. Amount of Leaked Information. This metric counts the information items S disclosed
by a system, e.g., the number of compromised users [Backstrom et al. 2007] or the
number of leaked DNA base pairs [Wang et al. 2009]. However, this metric does not
indicate the severity of a leak because it does not account for the sensitivity of the
leaked information.

privALI ” |S|

5.2.2. Relative Entropy. Relative entropy (also called Kullback-Leibler divergence DKL)
measures the distance between two probability distributions. The two distributions
must fulfill absolute continuity, i.e. if qpxq “ 0, then ppx˚q “ 0 as well. As a privacy met-
ric, the two distributions usually represent the true distribution X˚ and the adversary’s
estimate X, and relative entropy gives the amount (bits) of probabilistic information
revealed to the adversary [Deng et al. 2007]. For example, in a location privacy scenario,
the adversary may aim to find out which points of interest a user has visited. Relative
entropy then indicates how far the adversary’s estimate is from the truth.

privRLE ” DKLpX
˚||Xq “

ÿ

x,x˚

ppx˚q log2

ppx˚q

qpxq

Instead of the adversary’s estimate X, some applications of relative entropy use
the adversary’s observations Y , for example of obfuscated data in smart metering
[Kalogridis et al. 2010]. In this case, relative entropy indicates how far the distribution
of obfuscated data is from the true distribution.

5.2.3. Mutual Information. Mutual information quantifies how much information is
shared between two random variables. It can be computed as the difference between
entropy (Section 5.1.2) and conditional entropy (Section 5.1.7). In most cases, mutual
information is computed between the true distribution of data X˚ and the adversary’s
(obfuscated) observations Y , and it measures the amount of information leaked from a
privacy mechanism [Lin et al. 2002].

privMI ” IpX˚;Y q “ HpX˚q ´HpX˚|Y q “
ÿ

x˚PX˚

ÿ

yPY

ppx˚, yq log2

ppx˚, yq

ppx˚qppyq

To allow comparisons between scenarios, mutual information between X˚ and Y
can be normalized using the entropy of X˚. This can be interpreted as the degree of
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dependence between hidden data X˚ and observed data Y [Humbert et al. 2013].

privNMI ” 1´
IpX˚;Y q

HpX˚q

Alternatively, mutual information can be normalized using the number of entries in
X˚, for example the number of rows in a database. In this case, normalized mutual
information measures the number of bits leaked on average from any entry [Sankar
et al. 2013].

5.2.4. Conditional Privacy Loss. Another way of normalizing mutual information is the
conditional privacy loss, which measures the fraction of privacy of X˚ which is lost by
revealing Y [Agrawal and Aggarwal 2001].

privCPL ” 1´ 2´IpX
˚;Y q

5.2.5. Conditional Mutual Information. Mutual information can also be applied when the
adversary has access to prior knowledge. Conditional mutual information measures
the amount of information about X˚ that can be learned by observing Y , given prior
knowledge Z. It measures the correlation between X˚ and Y given Z [Coble 2008].

privCMI ” IpX˚;Y |Zq “ HpX˚|Zq ´HpX˚|Y, Zq

5.2.6. (Relative) Loss of Anonymity. Loss of anonymity describes the amount of informa-
tion that can be learned about a set of anonymous events X˚, given a set of observed
events Y , for the least private distribution of X˚ [Chatzikokolakis et al. 2007]. In
an anonymity protocol for example, X˚ indicates a user’s sending profile and ppy|x˚q
describes the probability that the output y is produced by the anonymity protocol, given
a specific user input x˚. To characterize the worst-case behavior of the anonymity
protocol, the metric computes the maximum mutual information (Section 5.2.3), i.e.,
the maximum amount of information that can leak from the anonymity protocol, over
all possible distributions of user sending profiles.

privLA ” max
ppx˚q

IpX˚;Y q

Relative loss of anonymity extends loss of anonymity by taking into account that the
adversary has access to certain revealed information Z. Instead of mutual information,
this metric is based on conditional mutual information (Section 5.2.5) and indicates
the maximum amount of information that can leak from a privacy mechanism over all
distributions of anonymous events X˚, given observations Y and prior knowledge Z.

privRLA ” max
ppx˚q

IpX˚;Y |Zq

5.2.7. Maximum Information Leakage. Maximum information leakage modifies mutual
information to consider only a single realization of the random variable Y . It quantifies
the maximum amount of information about private events or data X˚ that can be
gained by an adversary observing a single output y, where the maximum is taken over
all possible outputs [du Pin Calmon and Fawaz 2012]. In communications, for example,
maximum information leakage can refer to the amount of information the adversary
gains by observing a single message, taking the maximum information gain over all
possible messages that the adversary could observe.

privMIL ” max
yPY

IpX˚;Y “ yq
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5.2.8. System Anonymity Level. In anonymous communication, the system’s anonymity
level describes the amount of additional information needed to reveal all sender-receiver
relationships. Sender-receiver relationships are described in the adjacency matrix A.
Among all possible combinations between senders and receivers, the adversary aims to
find the correct combination that corresponds to the messages sent in a communication
round. If each sender/receiver can only send/receive one message, then the number of
combinations that the adversary has to choose from is the permanent of the adjacency
matrix perpAq, and the adversary’s estimated probability for each combination would
be ppxq “ 1

perpAq . Multiplicities on the sender or receiver side (i.e. one sender sending
multiple messages, or a receiver receiving multiple messages) partition the possible
combinations into equivalence classes E. The cardinality |E| of each equivalence class
indicates how many combinations it contains. The adversary’s estimate thus improves
depending on the cardinalities: ppxq “ |E|

perpAq . The system anonymity level then com-
putes the entropy based on this adversary estimate and normalizes with the number of
users |U | [Gierlichs et al. 2008].

privSAL ”

#

0, if |U | “ 1
1

logp|U |!qHp
|E|

perpAq q, if |U | ą 1

5.2.9. Information Surprisal. Information surprisal is a measure of self-information. It
quantifies how much information is contained in a specific outcome x of a random
variableX. In social networks,X represents user profiles that contain a set of attributes,
and ppxq is the frequency of a specific user’s combination of attribute values within
the set of all social network users. Information surprisal measures how surprised the
adversary would be upon learning the user’s attributes [Chen et al. 2013].

privIS ” ´ log2 ppxq

5.2.10. Privacy Score. The privacy score in a social network indicates a user u’s potential
privacy risk. It increases with the sensitivity ωx˚ of information items x˚ P X˚ and
their visibility Vispx˚, uq, e.g., the number of users knowing about each item [Liu and
Terzi 2010]. Any information on a user’s profile can be an information item, for example
the user’s gender or mother’s maiden name. To make the privacy score comparable
between users, the sensitivity ωx˚ is independent of the user (for example, computed
from the privacy settings of a large number of users).

privPS ”
ÿ

x˚PX˚

ωx˚ ¨ Vispx˚, uq

5.2.11. Positive Information Disclosure. Shannon’s criterion for perfect secrecy [Shannon
1949] demands that the adversary’s prior probability for the secret x˚ equals the pos-
terior probability that takes into account a new observation y, i.e. ppx˚q “ ppx˚|yq,
expressing that the adversary gains no additional information. (For encryption, it has
been shown that the one-time pad is the only cipher that satisfies perfect secrecy). Build-
ing on Shannon’s perfect secrecy, the positive information disclosure metric [Miklau
and Suciu 2004] quantifies how much the adversary’s posterior probability improves.
The metric indicates the highest improvement across all secrets x˚.

privPID ” sup
x˚PX˚

ppx˚|yq ´ ppx˚q

ppx˚q

In location privacy, for example, the secret is the path that a user travels on, and new
observations are geographic locations disclosed to the adversary [Fawaz et al. 2016].
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5.2.12. Increase in Adversary’s Belief. The increase in adversary’s belief measures the
difference between the adversary’s prior and posterior probabilities (e.g., of identifying
an individual in a set of users). Privacy is breached if this difference is greater than the
privacy parameter τ [Narayanan and Shmatikov 2009].

privIAB ” τ , where ppx|yq ´ ppxq ą τ

5.2.13. Reduction in Observable Features. In smart metering, load hiding algorithms try to
hide load transitions from the energy provider, because these can disclose at what time
which appliance was used. The reduction in observable features measures how many
transitions are hidden successfully by a privacy protection mechanism [McLaughlin
et al. 2011]. Load transitions form a time-series ~T , and the feature mass F p~T q condenses
this time series to a single value, for example the number of transitions in ~T with a
certain property, such as a minimum power level. The metric then relates the feature
masses with (~TY ) and without (~TX˚ ) privacy protection.

privROF ”
F p~TY q

F p~TX˚q

5.2.14. Pearson’s Correlation Coefficient. In statistics, Pearson’s correlation coefficient
measures the degree of linear dependence between two random variables. It is computed
as the covariance between X˚ and Y , normalized with the standard deviations σX˚ and
σY . In smart metering, this can be used to measure the correlation between original
and obfuscated load data [Kim et al. 2011].

privPCC ”
covpX˚, Y q

σX˚ ¨ σY

5.2.15. Full/Partial Disclosure. In query auditing, full disclosure indicates whether a
set of database queries uniquely determines a sensitive value [Nabar et al. 2008].
For example, if a database only permits aggregate queries to protect sensitive values,
then a series of sum queries may allow to infer sensitive values. However, the full
disclosure metric has important limitations. For example, if the adversary can infer
that a sensitive value falls in a small interval, then full disclosure would not be violated
because the sensitive value was not uniquely determined, but privacy may be violated
nevertheless [Kenthapadi et al. 2005].

Partial disclosure addresses these limitations and is also applicable to online query
auditing, i.e., the problem whether a new query should be answered or not, given a
set of past database queries and answers. The partial disclosure metric bounds the
change in the adversary’s confidence of inferring sensitive values. Specifically, a series
of queries q and query responses y is called τ -Safe with regard to a particular numeric
sensitive value si and an interval Int if this change in confidence is below a threshold τ .

privPD ” Safeτ,i,Int “

#

1, if 1
1`τ ď

ppsiPInt|q1,...,qt,y1,...,ytq
ppsiPIntq

ď p1` τq

0, otherwise

To apply this metric, the Safe predicate has to hold for all sensitive items and all
intervals. This AllSafe predicate can then be used to define the adversary’s success, and
an auditing mechanism is called private if the probability for the adversary’s success
is below a threshold τ 1 [Kenthapadi et al. 2005]. This definition assumes that both
adversary and auditor hold the same information about the distribution of sensitive
values in the database.
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5.3. Data Similarity
Data similarity metrics measure properties of observable or published data. They are
usually independent of the adversary and derive the privacy level solely from the
features of disclosed data. Almost all of these metrics originate from the database
domain, where they are commonly applied in the context of data sanitization and data
publishing.

Table IV. Metrics and references in the data similarity category and the domains they originated in
Section Metric Original Domain Reference

5.3.1 k-anonymity Databases [Samarati and Sweeney 1998]
5.3.2 (α,k)-anonymity Databases [Wong et al. 2006]
5.3.3 `-diversity Databases [Machanavajjhala et al. 2007]
5.3.4 m-invariance Databases [Xiao and Tao 2007]
5.3.5 t-closeness Databases [Li et al. 2007]
5.3.6 Stochastic t-closeness Databases [Domingo-Ferrer and Soria-Comas

2015]
5.3.7 (c,t)-isolation Databases [Chawla et al. 2005]
5.3.8 (k,e)-anonymity Databases [Zhang et al. 2007b]
5.3.9 (ε,m)-anonymity Databases [Li et al. 2008]
5.3.10 Multirelational k-anonymity Databases [Nergiz et al. 2009]
5.3.11 (X,Y)-privacy Databases [Wang and Fung 2006]
5.3.12 Historical k-anonymity Location [Bettini et al. 2005]
5.3.13 Cluster similarity Smart metering [Kalogridis et al. 2010]
5.3.14 Coefficient of determination R2 Smart metering [Kalogridis et al. 2010]
5.3.15 Normalized variance Databases [Oliveira and Zaïane 2003]

5.3.1. k-Anonymity. k-Anonymity is conceptually similar to the size of the anonymity
set (Section 5.1.1), but does not consider the adversary. It was originally proposed to
prepare statistical databases for publication. A medical database, for example, would
contain both identifying information (e.g., the names of individuals) and sensitive
information (e.g., their medical conditions). k-Anonymity assumes that identifying
columns are removed from a database before publication, and then demands that
the database table D can be grouped into equivalence classes with at least k rows
that are indistinguishable with respect to their quasi-identifiers q [Samarati 2001;
Sweeney 2002]. Quasi-identifiers by themselves do not identify users, but can do so
when correlated with other data. For example, the combination of the three quasi-
identifiers zip code, date of birth, and gender identifies 87% of the American population
[Sweeney 2002]. Each equivalence class E contains all rows that have the same values
for each quasi-identifier q, for example all individuals with the same zip code, date of
birth, and gender. To increase the size of equivalence classes to a minimum of k rows,
several algorithms exist to transform a given database to make it k-anonymous, for
example using suppression or generalization [Samarati and Sweeney 1998] or random
sampling [Li et al. 2012] (the latter is interesting because it also satisfies approximate
differential privacy, see Section 5.4.3).

privKA ” k, where @E : |E| ě k

However, studies have shown k-anonymity to be insufficient, especially for
high-dimensional data [Aggarwal 2005] and against correlation with other data
sets [Machanavajjhala et al. 2007], because it fails to protect against attribute dis-
closure [Xiao and Tao 2006], i.e. it does not provide property hiding. In addition, k-
anonymous data releases do not offer protection across multiple releases of the same
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data set [Xiao and Tao 2007], or when sensitive data, such as location data, are seman-
tically close [Shokri et al. 2010]. Despite this criticism, k-anonymity is still widely used
today, and is routinely applied to new privacy domains.

5.3.2. pα, kq-Anonymity / Privacy Templates. To prevent attribute disclosure and thus allow
for property hiding, pα, kq-anonymity extends k-anonymity with the additional require-
ment that in any equivalence class E (rows that have the same quasi-identifier values),
the frequency of a sensitive value s has to be less than α [Wong et al. 2006; Wang et al.
2007]. As a result, no single sensitive attribute can be dominant in an equivalence class.

privAK ” pα, kq, where @E : |E| ě k ^
|pE, sq|

|E|
ď α

However, it has been shown that attribute linkage can occur even when the frequency
of s is less than α [Fung et al. 2010].

5.3.3. `-Diversity. The `-diversity principle modifies k-anonymity to bound the diversity
of published sensitive information. It states that every equivalence class E must contain
at least ` well-represented sensitive values. This general principle can be instantiated
in different ways. In the simplest form, the `-diversity principle requires ` distinct
values in each equivalence class. However, this simple instantiation does not prevent
probabilistic inference attacks [Li et al. 2007].

Stronger instantiations are based on the idea that in each equivalence class, the `
most frequent values of the sensitive attribute s must have roughly the same frequen-
cies [Machanavajjhala et al. 2007]. In an instantiation based on entropy (Section 5.1.2),
for example, similar frequencies are indicated by a high entropy HpSEq of the sensitive
attribute frequencies.

privLE ” `, where @E : HpSEq ě logp`q

In an instantiation based on recursion, the most frequent value s1 must occur less often
than all other values si combined, within a multiplicative factor ω.

privLR ” `, where @E : s1 ă ωps` ` s``1 ` ...` snq

Although `-diversity is an improvement to k-anonymity, it has been shown to offer
insufficient protection against some attacks. In particular, it does not protect privacy
when multiple releases of statistical data are available [Xiao and Tao 2007], when the
distribution of sensitive values is skewed [Li et al. 2007], or when sensitive attributes
are semantically similar [Li et al. 2007], for example numerical values that are close to
each other [Zhang et al. 2007b]. In addition, the adversary may be able to reconstruct
sensitive attributes if he knows the algorithm used for data sanitization [Zhang et al.
2007a].

5.3.4. m-Invariance. m-Invariance modifies k-anonymity to allow for multiple releases
of the same data set that may contain added, modified, or deleted rows. Given two
k-anonymous data releases, an adversary can correlate the insertions and deletions
between two releases to infer sensitive values. To avoid this attack, m-Invariance states
that every equivalence class E must have at least m rows, and the values for sensitive
attributes s must all be different [Xiao and Tao 2007]. In addition, the set of distinct
sensitive values in each equivalence class must be the same in every release.

privMI ” m, where @E : |E| ě m ^ @si, sj P E : si ‰ sj ^

@E : distinct s must be the same in all releases
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5.3.5. t-Closeness. To prevent attribute disclosure by an adversary with knowledge
about the global distribution of sensitive attributes, t-closeness modifies k-anonymity to
bound the distribution of sensitive values. It states that the distribution SE of sensitive
values in any equivalence class E must be close to their distribution S in the overall
table. In particular, the distance between distributions dpS, SEq, measured using the
Earth Mover Distance metric, must be smaller than a threshold t [Li et al. 2007].

privTC ” t, where @E : dpS, SEq ď t

5.3.6. Stochastic t-Closeness. Stochastic t-closeness was introduced to bridge the gap
between k-anonymity based metrics and differential privacy (Section 5.4.2) [Domingo-
Ferrer and Soria-Comas 2015]. t-Closeness in its original form leaves the sensitive
values in a data table intact, whereas stochastic t-closeness allows stochastic modifica-
tion of the sensitive values. In particular, it can be shown that if the distribution of the
sensitive values satisfies ε-differential privacy (see Section 5.4.2), then the data table
satisfies stochastic t-closeness, where the value of t depends on the data table and ε.

5.3.7. pc, tq-Isolation. This metric extends k-anonymity to consider an adversary. The
metric measures how well an adversary can isolate points in a database D [Chawla
et al. 2005]. The difference between the adversary’s estimate x and the target point x˚
is given by δx. A target point x˚ is pc, tq-isolated, i.e., the adversary succeeds, if a ball B
with radius cδx around the adversary’s estimate includes fewer than t other points.
c can be seen as isolation parameter, determining the size of the ball, whereas t is a
privacy threshold.

privCT ” pc, tq, where |Bpx, cδxq XD| ă t and δx “ }x´ x˚}

5.3.8. pk, eq-Anonymity. To modify k-anonymity to apply to numerical instead of cate-
gorical attributes, pk, eq-anonymity additionally requires that the range of sensitive
attributes in any equivalence class E must be greater than e [Zhang et al. 2007b].

privKE ” pk, eq, where @E : |E| ě k ^ rangepEq ą e

However, pk, eq-anonymity does not take into account how values within the range e
are distributed, which can lead to attribute disclosure via a proximity attack [Li et al.
2008]. For example, if 90% of sensitive values are within a short interval at one end of
the range e, and the remaining 10% are at the other end of e, then the adversary can
infer with 90% confidence that a user’s sensitive value is in the short interval [Fung
et al. 2010].

5.3.9. pε,mq-Anonymity. Another extension of k-anonymity to numerical attributes is
pε,mq-anonymity. It addresses the proximity attack against pk, eq-anonymity by bound-
ing the probability of inferring the value of a sensitive attribute to at most 1{m. To
achieve this bound, pε,mq-anonymity limits the number of members e in each equiv-
alance class E with numerically ε-similar sensitive values s [Li et al. 2008].

privEM ” @E : @e P E :
|Ê|

|E|
ď

1

m
, where Ê are the members of E whose

sensitive values s fall in rspeq ´ ε, speq ` εs

5.3.10. Multirelational k-Anonymity. Multirelational k-anonymity modifies k-anonymity to
apply to the record owner level instead of the record level, thus extending it to tables
in a relational database [Nergiz et al. 2009]. To do this, multirelational k-anonymity
joins the database table identifying the record owners Dpers with all tables containing
database records Di, and then applies k-anonymity to the result of the join J . For every
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record owner in Dpers, the resulting join needs to have at least k´1 other record owners
with the same quasi-identifier values, and so the equivalence classes Epers contain all
record owners with the same quasi-identifier values (instead of all records with the
same quasi-identifier values, as in k-anonymity).

privMK ” k, where J “ Dpers ’ D1 ’ ¨ ¨ ¨ ’ Dn and @Epers P J : |Epers| ě k

5.3.11. pX,Y q-Privacy. pX,Y q-privacy modifies k-anonymity to bound the confidence
with which sensitive values can be inferred [Wang and Fung 2006]. X and Y denote
groups of database columns with quasi-identifiers and sensitive properties, respectively,
and |Drxs| denotes the number of records in database D containing the value x. pX,Y q-
privacy then requires that for any values x P X and y P Y , the percentage of records
containing both x and y, among those containing x, be less than k.

privXY ” k, where max
yPY

"

max
xPX

"

|Dry, xs|

|Drxs|

**

ď k, and 0 ă k ď 1

Applied to sequential data releases, pX,Y q-privacy uses columns that are common
between two releases as X and can thus ensure that sequential releases are pX,Y q-
private.

5.3.12. Historical k-Anonymity. In location-based services, users include their location in
every request they send to the service, which can allow the server to track users. Thus,
historical k-anonymity defines (time, location) pairs as quasi-identifiers and requires
that the adversary cannot link a request to an individual user, but only to k or more
users [Bettini et al. 2005]. To formalize this requirement, a user’s personal history
of locations L is a sequence of (time, location) pairs, and requests M are (potentially
obfuscated) times and locations from which user requests were sent. L is time-location
consistent with a request m if there is an entry in L whose time and location are within
the time interval and location area given in m. Historical k-anonymity is satisfied if a
user’s set of requests Mu is location-time consistent with the location history of k ´ 1
other users U .

privHKA ” k, where @u, u1 P U : |Lu1 is location-time consistent with Mu| ě k

5.3.13. Cluster Similarity. In smart metering, the time series of differences in load mea-
surements, so-called transitions, can be obfuscated by a load hiding algorithm. Cluster
similarity is based on the idea that an adversary may use clustering to retrieve informa-
tion about patterns in energy consumption. To compute cluster similarity, a clustering
algorithm is applied to both the original time series of load transitions ~TX˚ and the
obfuscated time series ~TY , resulting in two sets of n clusters CX˚ and CY , respectively.
The element-wise subtraction of CX˚ from CY reveals all transitions that were not
placed in the correct cluster. After normalizing with the number of original load transi-
tions, cluster similarity then indicates the percentage of correctly clustered transitions
to show how effectively the original values have been hidden [Kalogridis et al. 2010].

privCS ” 1´
|@i : CY i ´ CX˚i|

|~TX˚ |

5.3.14. Coefficient of Determination R2. The coefficient of determination R2 measures how
much variability in data is accounted for by a model for the data. In smart metering,
for example, the data is the obfuscated time series of differences in load measurements
~TY (with ~TY indicating the mean value), and the model is a linear regression fitted to
these obfuscated load transitions, resulting in predicted values ~TX [Kalogridis et al.
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2010]. The coefficient of determination compares the error sum of squares SSE and the
regression sum of squares SSR.

privR2 ” 1´
SSE

SSR ` SSE
, where SSE “

ÿ

t

p~TY ´ ~TXq
2 and SSR “

ÿ

t

p~TX ´ ~TY q

5.3.15. Normalized Variance. In privacy-preserving data publishing that uses data per-
turbation, normalized variance is derived from the statistical variance σ2 and measures
the dispersion between the original data X˚ and perturbed data Y [Oliveira and Zaïane
2003]. However, this metric does not account for the nature of the data and assumes
that high variance means better privacy.

privVAR ”
σ2pX˚ ´ Y q

σ2pX˚q

5.4. Indistinguishability
Indistinguishability metrics indicate whether the adversary can distinguish between
two items of interest (such as recipients of a message, or sensitive attributes in a
database). Many of these metrics are associated with privacy mechanisms that provide
formal privacy guarantees. While many come from the database domain, they have
also found application in communication systems, location-based systems, and smart
metering.

Table V. Metrics and references in the indistinguishability category and the domains they originated in
Section Metric Original Domain Reference

5.4.1 Cryptographic game Communication [Juels and Weis 2009]
5.4.2 Differential privacy Databases [Dwork 2006]
5.4.3 Approximate differential privacy Databases [Dwork et al. 2006]
5.4.4 Distributed differential privacy Smart metering [Shi et al. 2011]
5.4.5 Distributional privacy Smart metering [Jelasity and Birman 2014]
5.4.6 Geo-indistinguishability Location [Andrés et al. 2013]
5.4.7 d-χ-privacy Databases [Chatzikokolakis et al. 2013]
5.4.8 Joint differential privacy Databases [Kearns et al. 2014]
5.4.9 Computational differential privacy Databases [Mironov et al. 2009]
5.4.10 Information privacy Databases [du Pin Calmon and Fawaz 2012]
5.4.11 Observational equivalence Communication [Hughes and Shmatikov 2004]

5.4.1. Cryptographic Games/Semantic Security. The classic definition of semantic security
can be used to prove privacy properties of cryptographic protocols. To this end, a
challenge-response game, or cryptographic game, is set up in which the adversary
selects the inputs for a protocol and is given the output and two alternative outcomes
y1 and y2 after the protocol has been executed. The adversary then has to make an
estimate, x, indicating whether y1 or y2 is the correct outcome x˚. The adversary has
an advantage if they can do this with a probability that is non-negligibly greater than
1
2 , that is, if their probability is better than a random guess [Juels and Weis 2009].

If the adversary’s advantage is smaller than a negligible function εpkq (k is a security
parameter), then the protocol provides computational privacy, and unconditional privacy if the
advantage is zero [Hermans et al. 2011].

privCG ”

"

1 if ppx “ x˚q ď 1
2 ` εpkq

0 otherwise

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:24

5.4.2. Differential Privacy. In statistical databases, differential privacy guarantees that
any disclosure is equally likely (within a small multiplicative factor ε) regardless of
whether or not an item is in the database [Dwork 2006]. For example, the result of
a database query should be roughly the same regardless of whether the database
contains an individual’s record or not. This guarantee is usually achieved by adding a
small amount of random noise to the results of database queries. Formally, differential
privacy is defined using two data sets D1 and D2 that differ in at most a single row, i.e.,
the Hamming distance between the two data sets is at most 1. A privacy mechanism,
realized as a randomized function K, operating on these data sets is ε-differentially
private if for all sets of query responses S, the output random variables (query responses)
for the two data sets differ by at most exppεq.

privDP ” @S Ď RangepKq : ppKpD1q P Sq ď exppεq ¨ ppKpD2q P Sq

In the interactive setting, differential privacy provides privacy guarantees if the
allowed number of queries is limited [McSherry 2009] (each subsequent query reduces
the strength of the privacy guarantee by adding its privacy parameter ε). In the non-
interactive setting [Dwork et al. 2009], differential privacy provides guarantees only for
a certain class of queries [Soria-Comas and Domingo-Ferrer 2013]. In the local setting,
differential privacy can protect properties in addition to identities, e.g. settings in a
client software [Erlingsson et al. 2014] or arbitrary strings [Fanti et al. 2016]. However,
the choice of the parameter ε is difficult: values reported in the literature vary from
0.01 [Hsu et al. 2014a] to 100 [Yu et al. 2014]. A no-free-lunch theorem shows that
differential privacy’s guarantees degrade in the case of correlated data, for example
when nodes are added to a social network graph [Kifer and Machanavajjhala 2011].

5.4.3. Approximate Differential Privacy. Approximate differential privacy relaxes differen-
tial privacy by allowing an additional small additive constant δ [Dwork et al. 2006].
Approximate differential privacy weakens the privacy guarantee, but allows data re-
leases/query responses with higher utility, e.g. by allowing a wider range of query
types [Blum et al. 2013], or by reducing the sample complexity of private learning
[Beimel et al. 2013]. The parameter δ should be chosen to be smaller than the inverse
of any polynomial in the size of the database }D} [Dwork and Roth 2014]. In particular,
δ « 1

}D} would allow to publish complete records of a small number of individuals, while
still meeting the differential privacy requirement. Abadi et al. [2016], for example, use
δ P r10´5, 1s.

privADP ” @S Ď RangepKq : ppKpD1q P Sq ď exppεq ¨ ppKpD2q P Sq ` δ

5.4.4. Distributed Differential Privacy. Distributed differential privacy extends approxi-
mate differential privacy to a setting where distributed entities contribute data to a
central data aggregator [Shi et al. 2011]. The data aggregator can be untrusted and
possibly colludes with a subset of the participants. This extension can be useful in smart
metering, where users may not trust the energy provider (who acts as data aggregator).
Each user applies randomness to their own values before sending them to the data ag-
gregator. Distributed differential privacy allows a subset of users pU Ă U to collude with
the aggregator, while still providing privacy guarantees for the remaining honest users.
To achieve this, distributed differential privacy ensures that the privacy mechanism’s
probability is taken over the randomness provided by honest users, or in other words,
the probability is conditional on the randomness r

pU provided by compromised users.

privDDP ” @S Ď RangepKq,@pU Ă U : ppKpD1q P S|r pU q ď exppεq ¨ ppKpD2q P S|r pU q ` δ

5.4.5. Distributional Privacy. Distributional privacy extends differential privacy to a
setting in which the data sets themselves do not need to be protected, but instead the
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parameters governing the generation of data. In a smart metering scenario, for example,
these parameters can be user habits, behavioral patterns, or sets of appliances in a
home [Jelasity and Birman 2014]. Distributional privacy assumes a distributed setting
in which smart meters apply noise to their local data, limiting the energy provider to
querying this distributed database. Formally, distributional privacy uses two parameter
sets θ1 and θ2 which govern the creation of two data sets and differ in at most one
element. The privacy mechanism K is distributionally ε-differentially private if the
probability that query response Kj is generated is roughly the same, regardless of
whether the underlying parameter set is θ1 or θ2.

privDSP ” ppθ1|Kjq ď exppεq ¨ ppθ2|Kjq
5.4.6. Geo-Indistinguishability. Geo-indistinguishability extends differential privacy to

location privacy scenarios. The idea is to apply two-dimensional (planar) noise to the
user’s geographical location so that the differential privacy requirements are met,
ensuring that the user enjoys εd-differential privacy within any distance d ą 0. Impor-
tantly, this definition implies that the user’s protection level depends on the distance
d. This could mean, for example, that a location-based service provider would be able
to distinguish which city the user is in, but not the location within the city. To achieve
geo-indistinguishability, the privacy mechanism K generates randomized location obser-
vations so that the distance between any two locations dpl1, l2q is roughly the same as the
distance between the distributions of randomized location observations dPpKpy1q,Kpy2qq

[Andrés et al. 2013].

privGI ” dPpKpy1q,Kpy2qq ď εdpl1, l2q

5.4.7. d-χ-Privacy. d-χ-privacy is a generalization of differential privacy that uses distin-
guishability metrics dχ to characterize the distance between two datasets instead of the
Hamming distance used in standard differential privacy [Chatzikokolakis et al. 2013].
In standard differential privacy, the distinguishability level between two datasets of
distance 1 is ε. In d-χ-privacy, the distinguishability level between datasets of arbitrary
distance is given by the distinguishability metric dχ.

privDX ” dPpKpD1q,KpD2qq ď dχpD1, D2q

Depending on the choice of metric, d-χ-privacy can represent different notions of
privacy. For example, the Euclidean distance is suitable for location privacy and results
in geo-indistinguishability described above. In smart metering, the maximum metric
(or Chebyshev distance) can be used to distort the accuracy of meter readings while
leaving general trends intact.

d-χ-privacy can also be used to construct elastic metrics that adapt to the characteris-
tics of the application domain. For example, in location privacy, the point-of-interest
density may influence the level of privacy we expect from geo-indistinguishability: in
a rural area with few points of interest, we may need a larger radius compared to an
urban area to achieve the same level of privacy [Chatzikokolakis et al. 2015].

5.4.8. Joint Differential Privacy. The idea of joint differential privacy [Kearns et al. 2014]
is that an individual’s private data can be disclosed to the individual him/herself, but
not to other individuals. Applied to a game theoretic problem and focusing on player u,
for example, joint differential privacy requires that the joint distribution on outputs
given to other players, i.e. KpDq´u, is differentially private in player u’s input [Hsu et al.
2014b].

privJDP ” @S Ď RangepKq : ppKpD1q´u P Sq ď exppεq ¨ ppKpD2q´u P Sq ` δ
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5.4.9. Computational Differential Privacy. Computational differential privacy replaces the
unrestricted adversary used in differential privacy with a computationally bounded
adversary. By using a weaker adversary model, computationally differentially private
mechanisms can give more accurate query responses. Informally, computational dif-
ferential privacy requires that the outputs produced by the privacy mechanism “look”
differentially private to every adversary. Depending on how “look” is formalized, the
definitions of computational differential privacy can be different [Mironov et al. 2009].
For example, a definition based on indistinguishability replaces the unrestricted adver-
sary with a computationally bounded adversary, and a definition based on simulation
requires that the outputs from randomized functions are computationally indistinguish-
able from the outputs from ε-differentially private mechanisms K.

5.4.10. Information Privacy. Information privacy captures the notion that the prior
and posterior probabilities of inferring sensitive data x˚ do not change significantly,
given query outputs y. ε-information privacy implies 2ε-differential privacy, but ad-
ditionally bounds the maximum information leakage (Section 5.2.7) to at most ε{ ln 2
bits [du Pin Calmon and Fawaz 2012]. Formally, a privacy-preserving query output
y provides ε-information privacy if for all sensitive values x˚, the ratio of posterior
probability ppx˚|yq to prior probability ppx˚q is very close to 1.

privIP ” expp´εq ď
ppx˚|yq

ppx˚q
ď exppεq, @y P Y : ppyq ą 0

In the context of wireless sensor networks, information privacy indicates that event
sources cannot be observed by an adversary. Event source unobservability requires that
for all possible observations of events in a system, the adversary’s prior probability
equals the posterior [Yang et al. 2008].

5.4.11. Observational Equivalence. Observational equivalence is a formal property that
states that the adversary cannot distinguish between two situations, for example which
user sent a given message [Hughes and Shmatikov 2004]. To use this metric, privacy
protocols are modeled using a formal process calculus such as the applied π-calculus.2
Observational equivalence is fulfilled if the observable outputs from protocol runs in
two situations are equivalent. This has been used, e.g., in voting privacy [Delaune et al.
2009], mobile telephony [Arapinis et al. 2012] and webs of trust [Backes et al. 2010].

5.5. Adversary’s Success Probability
Metrics based on the adversary’s success probability can be seen as general-purpose
metrics that subsume many other aspects of privacy. They depend strongly on the
adversary model (see Section 4.2) and on how exactly success is defined. Even though
the metrics in this section mostly originate from the communication and database
domains, they can be applied in every domain and setting where an adversary can be
defined. In addition to the adversary’s success (cases where the adversary successfully
identifies the correct individual, or the true positive rate), metrics in these section
should also consider the false positive and false negative rates, i.e. cases where the
adversary identifies an incorrect individual, and cases where the adversary fails to
identify the correct individual.

2A process calculus is a formal method to model and reason about concurrent systems. The applied π-calculus
is a process calculus that includes cryptographic primitives and has thus been used extensively to check
properties of cryptographic protocols. To verify privacy properties of a protocol, the protocol is modeled in the
applied π-calculus, and an automated tool such as ProVerif can verify whether the privacy properties hold for
all possible executions of the protocol.
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Table VI. Metrics and references in the success category and the domains they originated in
Section Metric Original Domain Reference

5.5.1 Adversary’s success rate Communication [Wright et al. 2003]
5.5.2 Degrees of anonymity Communication [Reiter and Rubin 1998]
5.5.3 Privacy breach level Databases [Evfimievski et al. 2004]
5.5.4 (d,γ)-privacy Databases [Rastogi et al. 2007]
5.5.5 δ-presence Databases [Nergiz et al. 2007]
5.5.6 Hiding property Communication [Tóth et al. 2004]

5.5.1. Adversary’s Success Rate. This metric measures the probability that the adversary
is successful, or the percentage of successes in a large number of attempts [Wright et al.
2003]. Depending on the application scenario, success can be defined in different ways:
in databases, for example, the adversary is successful when he can find a record s1 that
is similar to the target record s with a similarity threshold of τs and an error threshold
of τe [Narayanan and Shmatikov 2008].

privSRD ” ppSimps, s1q ě τsq ě τe

In communication systems, the adversary is successful when he can identify the
sender of a message [Shmatikov 2002], or when he can compromise a communication
path with a given amount of resources (e.g., number of nodes and bandwidth) [Murdoch
and Watson 2008].

5.5.2. Degrees of Anonymity. Reiter and Rubin [1998] define six degrees of anonymity
for communication systems, which depend on how likely the adversary’s success is.
In communication systems, for example, ppxq indicates the adversary’s probability
to identify the sender (or receiver) of a message. ‘Absolute privacy’ states that the
communication produced no observable effects. ‘Beyond suspicion’ indicates that the
sender is equally as likely as all other potential senders. ‘Probable innocence’ means
that the sender is as likely as not to be the originator of a message. ‘Possible innocence’
states that there is a nontrivial probability δ that the sender is someone else. ‘Exposed’
indicates that the adversary’s probability is above a threshold τ . Lastly, ‘provably
exposed’ says that the adversary can prove who the sender is.

privDOA ”

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

absolute privacy, if ppxq “ 0

beyond suspicion, if ppxq “ 1
|X|

probable innocence, if ppxq ď 0.5

possible innocence, if ppxq ă 1´ δ

exposed, if ppxq ě τ

provably exposed, if ppxq “ 1

However, it has been noted that the degree of anonymity does not reflect the adver-
sary’s real probability of success, because it ignores the cardinality of the anonymity
set [Murdoch 2013].

User-specified innocence [Chen and Pang 2012] merges two degrees of anonymity,
probable and possible innocence, by introducing a parameter α that represents the
probability of the most likely user in the anonymity set.

5.5.3. Privacy Breach Level. A privacy breach occurs if the posterior probability of a
property, given its prior probability, is higher than the threshold τ . In a data mining
scenario, for example, a server (e.g., a recommender system) mines association rules
between items (e.g., books) based on their occurrence in user transactions, and users
can randomize their transactions to hide which user has which items. The privacy
breach level then uses the probability that an item s is contained in a transaction Tx˚ ,
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given the probability that the item is part of an item set S, which is a subset of the
randomized transaction Ty that was transmitted to the server [Evfimievski et al. 2004].

privPBL ” τ , where Ds P S so that pps P Tx˚ |S Ď Tyq ě τ

The privacy breach level can also measure privacy in networking, where the metric
refers to the conditional probability that a node generated a message with specific
characteristics, given that another node received such a message [Seys and Preneel
2009].

5.5.4. pd, γq-Privacy. An extension of the privacy breach level is d, γ-privacy, which intro-
duces additional bounds on the prior and posterior probabilities (d and γ, respectively)
so that the ratio between posterior and prior probability cannot drop by more than a
factor of d{γ [Rastogi et al. 2007]. This metric is similar to Information Privacy (Section
5.4.10), but uses more detailed bounds.

privDG ”
d

γ
ď
pps|Sq

ppsq
, where ppsq ď d and pps|Sq ď γ

5.5.5. δ-Presence. In databases, δ-presence bounds the adversary’s probability of in-
ferring that an individual u is part of some published data DY , assuming that the
adversary has access to external database tables DZ so that all individuals in DY are
also in DZ [Nergiz et al. 2007].

privDLP ” pδmin, δmaxq, where @u P UZ : δmin ď ppu P UY q ď δmax

The adversary’s probability can be based on comparing the number of users in the
data table (e.g., ppu P UY q “ |UY |

|UZ |
), or on elimating rows based on other attributes.

However, this model assumes that the adversary and the data publisher who assesses
whether δ-presence is satisfied have access to the same external tables. This assumption
may not hold in practice [Fung et al. 2010].

5.5.6. Hiding Property. In communication systems, the source (or destination) hiding
property measures the adversary’s maximum probability ppxpm,uqq for any user u to be
sender (or recipient) of a given message m. The source (or destination) is assumed to be
hidden if this probability is smaller than a threshold τ [Tóth et al. 2004].

privHP ” τ , where @m,@u : ppxpm,uqq ď τ

5.6. Error
Error-based metrics quantify the error an adversary makes in creating his estimate.
Because information about the true outcome is needed to compute these metrics, they
cannot be computed by the adversary. Similar to the adversary’s success probability
category, metrics in the error category are applicable to all domains.

Table VII. Metrics and references in the error category and the domains they originated in
Section Metric Original Domain Reference

5.6.1 Adversary’s expected estimation error Location [Shokri et al. 2011]
5.6.2 Expectation of distance error Location [Hoh and Gruteser 2005]
5.6.3 Mean squared error Communication [Oya et al. 2014]
5.6.4 Percentage incorrectly classified Social networks [Narayanan and Shmatikov 2009]
5.6.5 Health privacy Genome privacy [Humbert et al. 2013]

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:29

5.6.1. Adversary’s Expected Estimation Error. In location privacy, the adversary’s expected
estimation error measures the adversary’s correctness by computing the expected
distance between the true location x˚ and the estimated location x using a distance
metric dpq, for example the Euclidean distance or a metric that yields either 0 or 1 (in
this case, the metric reduces to the adversary’s probability of error). The expectation is
computed over the posterior probability of the adversary’s estimated locations x based
on his observations y [Shokri et al. 2011].

privAEE ”
ÿ

xPX

ppx|yqdpx, x˚q

The metric can also be used in other domains if an appropriate distance metric is
available. In genomic privacy, for example, the distance metric depends on how the
values of genetic variations are encoded [Humbert et al. 2013].

5.6.2. Expectation of Distance Error. Similar to the adversary’s expected estimation error,
the expectation of distance error measures the expected distance error of an adversary,
but over multiple timesteps T and location assignment hypotheses H [Hoh and Gruteser
2005]. Each hypothesis h assigns a user to a location with probability ph,tpxq, and the
distance dh,tpx, x˚q indicates the distance between the correct user location and the
location in hypothesis h at timestep t.

privEDE ”
1

|U |T

ÿ

tPT

ÿ

hPH
ph,tpxqdh,tpx, x

˚q

5.6.3. Mean Squared Error. In statistical parameter estimations, a common goal is to
minimize the mean squared error. As a privacy metric, the mean squared error describes
the error between observations y by the adversary and the true outcome x˚, for example
the error in the assignment of communication relationships [Oya et al. 2014], or the
error in reconstructing user data in participatory sensing [Ganti et al. 2008].

privMSE ”
1

|X˚|

ÿ

x˚PX˚

}x˚ ´ y}2

5.6.4. Percentage Incorrectly Classified. This metric measures the percentage of incorrectly
classified users or events U 1 within the set of all users or events U , for example users
that were incorrectly de-anonymized by the adversary [Narayanan and Shmatikov
2009], or events that were incorrectly classified in a smart metering scenario [Lisovich
et al. 2010].

privPIC ”
U 1

U
5.6.5. Health Privacy. Health privacy is a metric from genome privacy that captures

privacy with regard to a specific disease [Humbert et al. 2013]. The metric assumes
that a set of genetic variations V contributes to the disease risk, where each variation
contributes to a varying extent ωv. The better an adversary can predict the individual
genetic variations, the better he is able to infer the user’s disease risk. The metric is
computed as the weighted, normalized sum over a base metric Bv which measures the
privacy of each genetic variation. Base metrics can be normalized entropy (Section
5.1.4), normalized mutual information (Section 5.2.3), or expected estimation error
(Section 5.6.1) [Humbert et al. 2013]. Depending on the base metric, health privacy
measures a different kind of output; in the case of expected estimation error, health
privacy measures the adversary’s weighted average error.

privHLP ”
1

ř

vPV ωv

ÿ

vPV

ωvBv

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:30

5.7. Time
Time-based metrics focus on time as a resource that the adversary needs to spend
to compromise users’ privacy. Some time-based metrics measure the time until the
adversary succeeds, assuming PETs will fail eventually, while others measure the time
until the adversary’s confusion, assuming PETs will succeed eventually. These metrics
originate (and are usually applied) in the communication and location domains, but
have also found application in smart metering.

Table VIII. Metrics and references in the time category and the domains they originated in
Section Metric Original Domain Reference

5.7.1 Time until adversary’s success Communication [Wright et al. 2002]
5.7.2 Maximum tracking time Location [Sampigethaya et al. 2005]
5.7.3 Mean time to confusion Location [Hoh et al. 2007]

5.7.1. Time until Adversary’s Success. The most general time-based metric measures the
time until the adversary’s success [Wright et al. 2002]. It assumes that the adversary
will succeed eventually, and is therefore an example of a pessimistic metric. This metric
relies on a definition of success, and varies depending on how success is defined in
a scenario. For example, success in a communication system can be if the adversary
identifies n out of N of the target’s possible communication partners [Agrawal and
Kesdogan 2003].

Success can also be when the adversary first compromises a communication
path [Johnson et al. 2013; Vratonjic et al. 2013]. In an onion routing system such
as Tor [Dingledine et al. 2004], path compromise happens when the adversary controls
all relays on a user’s onion routing path.

5.7.2. Maximum Tracking Time. In location privacy, the adversary often aims to not only
break privacy at a single point in time, but to track a target’s location over time. The
adversary’s tracking ability is measured by the maximum tracking time, defined as the
cumulative time that the size of the target u’s anonymity set remains 1 [Sampigethaya
et al. 2005].

privMTT ” Cumulative time when |ASu| “ 1

This metric tends to overestimate a target’s privacy because it assumes that the ad-
versary has to be completely certain, i.e., the anonymity set has to be of size 1, to
be successful. In reality, however, an adversary may be capable to continue tracking
despite a small number of users in the target’s anonymity set.

In a smart metering scenario, the maximum tracking time describes the percentage
of a time interval during which the adversary can correctly classify the user’s load
transitions [Lisovich et al. 2010].

5.7.3. Mean Time to Confusion. To avoid the maximum tracking time’s overestimation of
privacy, the mean time to confusion measures the time during which the adversary’s
uncertainty stays below a confusion threshold τ [Hoh et al. 2007]. The adversary’s
uncertainty is measured using the entropy HpXq (Section 5.1.2), with the random
variable X indicating the adversary’s estimated probabilities for each member of the
anonymity set.

privMTC ” Time during which HpXq ă τ

Instead of time to confusion, the metric can also measure the distance to confusion, i.e.,
the travel distance until the adversary’s tracking uncertainty rises above the threshold.
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5.8. Accuracy / Precision
Accuracy metrics quantify the accuracy of the adversary’s estimate. Although it can be
argued that the accuracy of an estimate is not correlated with privacy because it does
not allow to draw conclusions about the adversary’s correctness or certainty [Shokri
et al. 2011], inaccurate estimates can lead to higher privacy and are thus an important
aspect of privacy. Most metrics in this category originate from the domain of location-
based services and measure geographic precision, but others are applicable more widely,
including databases and communication systems.

Table IX. Metrics and references in the accuracy/precision category and the domains they originated in
Section Metric Original Domain Reference

5.8.1 Confidence interval width Databases [Agrawal and Srikant 2000]
5.8.2 pt, δq privacy violation Databases [Kantarcioğlu et al. 2004]
5.8.3 Statistically strong event unobservabil-

ity
Communication [Shao et al. 2008]

5.8.4 Size of uncertainty region Location [Cheng et al. 2006]
5.8.5 Accuracy of obfuscated region Location [Ardagna et al. 2007]
5.8.6 Coverage of sensitive region Location [Cheng et al. 2006]

5.8.1. Confidence Interval Width. According to the confidence interval width, the amount
of privacy at τ% confidence is given by the width of the confidence interval for the
adversary’s estimate x P rx2, x1s in which the true outcome x˚ lies [Agrawal and Srikant
2000].

privCIW ” |x2 ´ x1| where ppx1 ď x ă x2q “ τ{100

However, when publishing perturbed data, knowledge of the confidence interval width
may allow reconstruction of the original distribution [Agrawal and Aggarwal 2001].

5.8.2. pt, δq Privacy Violation. In data mining, pt, δq privacy violation gives information
whether the release of a classifier for public data is a privacy threat, depending on
how many training samples t are available to the adversary. Training samples link
public data D to sensitive data S for some individuals, and privacy is violated when an
adversary can infer sensitive information from public data for individuals who are not
in the training samples. The metric compares the Bayes errors ρ for the cases when the
adversary builds a classifier based on training samples alone (ρptq), or based on training
samples and a given classifier for public data (ρpt, CpDqq). The classifier CpDq is pt, δq
privacy violating if it reduces the adversary’s Bayes error by more than the privacy
parameter δ [Kantarcioğlu et al. 2004].

privTPP ” ρpt;CpDqq ď ρptq ´ δ

5.8.3. Statistically Strong Event Unobservability. In wireless sensor networks, a privacy
goal is to hide where in the network an event has occurred. Statistically strong event
unobservability compares the message patterns in all parts of the network so that
event locations are not revealed by a sudden burst of messages. For example, the
event sources in a wireless sensor network are unobservable if the distributions of
inter-message delays are roughly the same in all parts of the network. Specifically, the
metric requires that the distance between distributions dpF1, F2q is smaller than τ , and
that the difference between the distribution parameters f is smaller than ε [Shao et al.
2008]. However, the metric is limited to distributions that have a single parameter,
such as the exponential distribution.

privSEU ” pτ, εq, where dpF1, F2q ď τ ^ p1´ εqf1 ď f2 ď p1` εqf1
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5.8.4. Size of Uncertainty Region. In location privacy, the size of the uncertainty region
denotes the minimal size of the region RU to which an adversary can narrow down the
position of a target user u [Cheng et al. 2006].

privSUR ” AreapRU q

5.8.5. Accuracy of Obfuscated Region. In location-based services, users may report a
certain region back to a service provider, e.g. to ask for local services in that region.
To protect their location privacy, users can obfuscate this region before submitting it
by enlarging it to a point where it satisfies a chosen minimum user requirement rmin
(assuming circular areas). The accuracy of the obfuscated region then indicates how
relevant to a service provider the reported area is, a value of 0 representing the lowest
relevance, or highest level of privacy respectively. The metric can be computed based on
the optimal accuracy provided by the used sensing technology ropt and the user-specified
minimum rmin [Ardagna et al. 2007].

privAOR ”
r2

opt

r2
min

5.8.6. Coverage of Sensitive Region. The coverage of the sensitive region evaluates how
a user’s sensitive regions RS overlap with the adversary’s uncertainty region RU (see
Section 5.8.4) [Cheng et al. 2006]. A sensitive region can be, for example, a hospital or a
nightclub. The uncertainty region indicates the smallest region of which the adversary
is certain that it includes the user. If the two regions overlap, the adversary succeeds in
linking the user to the sensitive region.

The metric is normalized to the area of the uncertainty region, so that it becomes 1
when RU equals or is fully contained in RS , in which case the adversary can indubitably
associate a user with the sensitive region.

privCSR ”
AreapRS XRU q

AreapRU q

6. HOW TO SELECT SUITABLE PRIVACY METRICS
Given the number and diversity of privacy metrics, selecting metrics for a given scenario
can be difficult. We suggest a series of nine questions to guide the selection process.
Answering each of the questions makes sure that all aspects of metric selection are
considered. Where possible and appropriate, we point to metrics or groups of metrics
that we associate with particular answers.

The first two questions ask about which aspects of privacy should be quantified
(question 6.1), and which adversary types we need to protect against (question 6.2).
Next, we suggest to consider which data sources need to be protected (question 6.3),
and which input data are available to compute the metrics (question 6.4). We then move
on to consider the requirements of the target audience (question 6.5) and which metrics
have been used in related work (question 6.6). We also suggest to check whether any of
the selected metrics have flaws (question 6.7), and whether validated implementations
for the metrics are available (question 6.8). Finally, we consider strategies to choose
parameter settings for the selected metrics (question 6.9).

We have already succesfully applied this selection strategy in a case study for genomic
privacy [Wagner 2017], and found the following questions useful to support the selection
process.
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Table X. Privacy Metrics (1): Uncertainty, Information Gain/Loss, Similarity/Diversity, and Time Outputs
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Anonymity set size r0, |X|s H obs IP x
Asymmetric entropy r0, 1s H obs, pub IP x x
Conditional entropy r0,8s H obs, pub IP x x
Conditional privacy r1,8s H obs, pub IP x x
Cross-entropy r0,8s H pub IP x x
Cumulative entropy r0,8s H obs IP x
Degree of unlinkability r0,8s H obs, pub P x (x)
Entropy r0, H0pXqs H obs, pub IP x
Genomic privacy r0,8s H pub P x x
Inherent privacy r1, |X|s H obs, pub IP x
Max-entropy (Hartley) r0,8s H obs, pub IP x
Min-entropy r0,8s H obs, pub IP x
Normalized entropy r0, 1s H obs, pub IP x
Protection level r0,8s H obs P x x
Quantiles on entropy r0, H0pXqs H obs, pub IP x x
Rényi entropy r0,8s H obs, pub IP x x
User-centric privacy r0, H0pUqs H obs IP x x

In
fo

rm
at

io
n

G
ai

n

Amount of leaked information r0,8s L pub, oth IP x
Conditional mutual information r0,8s L obs, pub IP x x x
Conditional privacy loss r0, 1s L obs, pub IP x x
Full/partial disclosure r0, 1s L obs, pub IP x x
Increase in adversary’s belief true, false, δ: r0, 1s L obs, pub IP x x x
Information surprisal s0,8s L pub P x x
Maximum information leakage r0,8s L obs, pub IP x
Mutual information r0,8s L obs, pub IP x x
Normalized mutual information r0, 1s H obs, pub IP x x
Pearson’s correlation coefficient r0, 1s L obs, rep IP x
Positive information disclosure r0, 1s L obs IP x
Privacy score r0,8s L pub P x
Reduction in observable features r0, 1s L obs, rep P x
Relative entropy r0,8s H obs, pub IP x x
(Relative) Loss of anonymity r0, HpXqs L obs IP x x (x)
System anonymity level r0,8s H obs I x x

Si
m

ila
ri

ty

(α,k)-anonymity k: r0,8s, α: r0, 1s k: H, α: L pub IP x
(c,t)-isolation r0,8s H pub IP x x x
Cluster similarity r0, 1s L obs, rep P x
Coefficient of determination R2 r0, 1s L obs, rep P x
(ε,m)-anonymity ε : r0, 1s, m: r1,8s ε: H, m: H pub IP x
Historical k-anonymity r0,8s H obs IP x x
k-anonymity r1, |D|s H pub I x
(k,e)-anonymity r0,8s H pub IP x
`-diversity r0,8s H pub IP x
m-invariance r0,8s H pub IP x
Multirelational k-anonymity r0,8s H pub I x x
Normalized variance r0, 1s H pub IP x
Stochastic t-closeness t: r0,8s, ε: r0,8s L pub IP x x
t-closeness r0,8s L pub IP x x
(X,Y)-privacy s0, 1s L pub IP x x

T
im

e Maximum tracking time r0,8s L obs I x
Mean time to confusion r0,8s L obs I x x
Time until adversary’s success r0,8s H obs IP x x (x)
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Table XI. Privacy Metrics (2): Indistinguishability, Adversary’s Success Probability, Error, and Accuracy/Precision Outputs
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Approximate differential privacy ε: r0,8s, δ: r0,8s ε: L, δ: L pub IP x x
Computational differential privacy r0,8s L pub IP x x x x
Crypto. game / semantic security true, false H obs IP x x x
d-χ-privacy r0,8s L pub IP x x
Differential privacy r0,8s L pub IP x x
Distributed differential privacy ε: r0,8s, δ: r0,8s ε: L, δ: L pub, rep IP x x
Distributional privacy r0,8s L pub, rep P x x
Geo-indistinguishability r0,8s L obs P x x
Information privacy true, false H obs IP x x
Joint differential privacy ε: r0,8s, δ: r0,8s ε: L, δ: L pub IP x x
Observational equivalence true, false H obs IP x x

Su
cc

es
s

Adversary’s success rate r0, 1s L obs IP x x (x)
(d,γ)-privacy r0, 1s L obs IP x x x
Degrees of anonymity r0, 1s L obs IP x x x
δ-presence r0, 1s L pub I x x x
Hiding property r0, 1s L obs I x x
Privacy breach level r0, 1s L obs IP x x x

E
rr

or

Adv.’s expected estimation error r0, 1s L obs IP x x
Expectation of distance error r0,8s H obs P x x
Mean squared error r0,8s H obs IP x x
Percentage incorrectly classified r0, 1s H obs, rep IP x x

A
cc

ur
ac

y

Accuracy of obfuscated region r0, 1s L obs P x
Confidence interval width r0,8s H pub, obs IP x x
Coverage of sensitive region r0, 1s L obs P x x
Size of uncertainty region r0,8s H obs P x
Stat. strong event unobservability r0,8s L obs P x x
(t,δ) privacy violation r0, 1s L pub P x x x x

6.1. Suitable Output Measures?
Which aspects of privacy do we want to quantify? Do we want to give privacy guarantees,
or is some loss of privacy acceptable?

The pool of potential metrics can be narrowed down by deciding which outputs we
want to measure. In Section 4.5, we classify the output measures of privacy metrics into
eight categories. Figure 1 and the Output column in Tables X and XI list the output
measure for each metric.

If the application scenario requires privacy guarantees in the sense that privacy
properties can be proven to hold, the only viable choices for metrics are in the indis-
tinguishability category. If the application instead calls for a quantification of privacy
levels, metrics from the other categories are more suitable.

Instead of fixing a single output measure for a scenario, we recommend to measure
several different outputs. Because none of the metrics measures ‘privacy’ directly, but
only quantities assumed to be related to privacy, each additional output category gives
information about an additional aspect of privacy.

For example, a study about location privacy by Shokri et al. [2011] used metrics
from three different categories to measure the adversary’s accuracy (confidence interval
width, Section 5.8.1), uncertainty (entropy, Section 5.1.2), and error (expected estimation
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error, Section 5.6.1). Following our recommendation, this selection could be extended
with a success metric that quantifies how likely it is for the adversary to succeed, or
with a time metric that measures the time until the adversary’s success. We might
also add a second uncertainty metric that indicates the size of the crowd into which an
individual can blend.

Besides including metrics from different categories, we recommend to select metrics
that reflect the average case, the distribution of privacy values, and the worst case.

6.2. Adversary Models?
What are the characteristics of the adversary we consider? How do we incorporate the
adversary’s goals and their knowledge?

We observed that papers presenting attacks against privacy tend to use metrics based
on time, error, or the adversary’s success probability, whereas papers presenting new
PETs tend towards accuracy, similarity, and indistinguishability metrics. In both cases,
this is a convenient choice: most metrics in the first group have a stronger focus on the
adversary, while the metrics in the second group emphasize the efficacy of the presented
PET. However, as we have argued before, the measurement of privacy benefits when
more aspects of privacy are measured. We therefore believe that both the ‘attack’ and
‘defense’ perspective can benefit from selecting metrics from the other side.

We also observed that different privacy domains make different assumptions about
the adversary. For example, time-based metrics in communication systems measure
the time until the adversary’s success, whereas time-based metrics in location privacy
measures the time until the adversary’s confusion. This is a fundamental difference,
and it is not obvious which flavor of the assumption holds in other privacy domains.

Care must be taken when choosing metrics that do not consider an adversary model.
For example, most data similarity metrics such as k-anonymity (Section 5.3) compute
the level of privacy depending only on properties of the data. However, if the adversary
happens to have relevant prior knowledge, the privacy level indicated by k is no longer
accurate.

We found few metrics that explicitly consider the resources an adversary has to
expend in order to succeed. Aside from time-based metrics, the only other metric
considering resources is probability of compromising a communication path (a variant
of the adversary’s success rate, see Section 5.5.1), where bandwidth and the number of
nodes are the constrained resources. Resource-based metrics are an interesting area for
future research, which means that if we consider a resource-constrained adversary, we
will have to create new metrics.

Lastly, it is important to consider which type of sensitive information the adversary
aims to reveal, i.e. either user identities or properties, and to select metrics that are
able to measure the relevant aspect.

6.3. Data Source?
Which data sources do we aim to protect?

We introduced four data sources in Section 4.3 – published, observable, re-purposed,
or all other data. Depending on which data source needs protecting, different metrics
apply. We summarize the primary data sources for each of the metrics in the Primary
data source column in Tables X and XI.

Although in many scenarios one data source will be the main cause of concern, con-
sidering all four data sources reduces the likelihood that unforeseen events compromise
the entire system. It also enables informed decisions about which privacy risks should
be mitigated or accepted. In addition, considering all four data sources can emphasize
the need for data minimization, because data that is not there does not need protection.
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6.4. Availability of Input Data?
Which types of input data do we want to consider, and which are available in our
scenario?

Input data refers to the information that is needed to compute a metric, such as the
adversary’s estimate, resources, and prior knowledge, the true outcome, or parameter
values. If a certain kind of input data is not available or applicable in a scenario, we
can disregard all metrics that need this input type. Similarly, if we explicitly want to
consider a certain input, we can disregard metrics that do not use this input type. We
describe different kinds of input data in Section 4.4 and show the kinds of input data
for each metric in the Inputs column of Tables X and XI.

6.5. Target Audience?
What is the intended audience for our study? What are their expectations regarding the
presentation of results, and do they understand the interpretations of our metrics?

An important consideration for the selection of metrics is the intended audience,
especially with regard to laypeople and researchers in other academic disciplines.

Whenever results need to be communicated to laypeople, it is important to select
metrics that can be understood easily. This does not mean that the formal definition of
the metric has to be simplistic; rather, it means that the metric should have an intuitive
interpretation, even if it simplifies the underlying technical details. However, we are
not aware of user studies that evaluate how easily different metrics are understood by
laypeople, or which interpretations help understanding.

Whenever metrics are intended to be used by researchers in other academic disci-
plines, it may be beneficial to use methods and terminology common in the respective
discipline. Consider genome privacy as an example: in many areas of biology it is com-
mon to conduct statistical analyses; for non-privacy researchers in this field, metrics
based on accuracy, error, or success will therefore be easier to understand and adopt
than, say, metrics based on indistinguishability.

6.6. Related Work?
Which metrics are used by work that is related to ours, and would those metrics be
suitable in our work as well? Which mathematical concepts or formalisms are used by
others in our field? Which of these are already available in the tools we use?

To enable comparisons between different studies in the same privacy domain, it is
useful to select metrics that have already been used by related work, even if those
metrics would otherwise not be the first choice. In addition, well-known metrics are
likely to be more easily understood by other researchers in the same field.

A related consideration is expertise. Some metrics are conceptually difficult, and hard
to use correctly. To reduce the risk of invalidating the results of an entire study, we
recommend to select both comparatively simple metrics and more complex ones.

6.7. Quality of Metrics?
Do any of the candidate metrics have known flaws? Is it feasible to conduct a study that
verifies that candidate metrics indeed behave as we intend?

Even though it is desirable to work with high-quality metrics, few studies systemati-
cally evaluate the quality of privacy metrics. This means that information about metric
quality is not readily available at the time of this writing. Even so, some metrics do
have known weaknesses (which we have pointed out throughout Section 5) and should
only be used with caution. If selecting known weak metrics, we recommend to use them
in combination with other metrics to help offset the weaknesses.
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If results about metric quality are not available for a particular privacy domain, it
may be possible to conduct a small study to evaluate how candidate metrics perform.

6.8. Metric Implementations?
Are there implementations of the candidate metrics that we can use, or compare our
implementation with?

Even when metrics are easy to understand, implementing them in a particular
scenario can be difficult, and challenges can arise with unexpected aspects of a metric.
For example, when implementing the entropy of an anonymity set, the challenge
may not be entropy itself, but the propagation of anonymity set probabilities over
multiple timesteps. Common challenges like this are likely to be solved to different
degrees in different implementations. The more research groups use and validate an
implementation, the higher the chance of detecting implementation errors. We therefore
recommend to consider selecting metrics for which a validated implementation exists.
Ultimately, only implementations that have been thoroughly validated can lead to
consistent results across studies.

6.9. Metric Parameters?
How should we choose the parameter values for the candidate metrics?

Many metrics use parameters to adapt to the privacy requirements of specific sce-
narios (see the Parameters column in Tables X and XI). For example, k-anonymity
(Section 5.3.1) uses the parameter k to indicate how many individuals in a database
should be indistinguishable from each other, user-centric privacy (Section 5.1.14) uses a
parameter to indicate how fast (in the user’s opinion) their privacy decays over time,
and health privacy (Section 5.6.5) uses weights to indicate the contribution of genetic
varations to a disease. However, it is often difficult to decide how these parameters
should be set. For example, studies using differential privacy (Section 5.4.2) have used
values for ε that span five orders of magnitude (from 0.01 to 100), and aside from Lee
and Clifton [2011], there is not much literature on parameter setting for differential
privacy. For k-anonymity (Section 5.3.1), some authors argue that k “ 3 satisfies US
regulations for the release of educational data [Daries et al. 2014], and some have used
k “ 5 for the release of medical data [Rynkiewicz 2015].

There are a number of strategies that can help determine parameter settings or miti-
gate suboptimal parameter settings. Most important is to clearly state the requirements
of the application scenario. Then, we recommend five strategies: (1) Ask users what
levels of privacy they would deem acceptable. However, care must be taken to present
privacy levels and the influence of parameter settings in an accessible way so that users
do not need extensive technical knowledge to participate. (2) Consider the required
utility, especially when there is concern that higher privacy will result in lower utility.
(3) Use real-world data to determine parameter settings for case studies. (4) Evaluate
several parameter settings to analyze how the parameter values influence privacy. (5)
Finally, we recommend to also include metrics that do not have parameters.

7. FUTURE RESEARCH DIRECTIONS
Despite the substantial body of research into privacy metrics presented in the previous
sections, there are a number of questions that merit further research.

7.1. Interdependent Privacy
Interdependent privacy refers to scenarios in which actions of one user affect the
privacy of other users, for example in social networks [Thomas et al. 2010], location
privacy [Vratonjic et al. 2013], or genome privacy [Humbert et al. 2013]. There are
two options for measuring interdependent privacy. The first option is to measure how

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:38

the value of an existing privacy metric changes when the degree of interdependency
increases. The effect of interdependency can then be shown by comparing absolute
values [Bloessl et al. 2015], or by computing a difference [Olteanu et al. 2014].

The second option is to create new metrics that explicitly consider interdependency.
In this case, it can be beneficial to make use of metrics that measure the consequences
that one user’s actions have on the privacy of another user. For example, this is done
in game theory, where the widely used Helly metric [Vorob’ev 1977] assesses players’
strategies in terms of their consequences which are the payoffs for each player. We
believe further research is needed to investigate the capabilities of these two options.

7.2. Privacy Attitudes and Behaviors
In this survey, we focused on technical privacy metrics and did not consider metrics
that measure users’ privacy attitudes, behaviors, or perception [Preibusch 2013]. User-
assigned privacy or privacy risk scores vary greatly in how information is collected
from the user. For example, some studies measure users’ perception of privacy risks
or privacy attitudes on Likert scales [Acquisti et al. 2003; Achara et al. 2014]. Others
require users to label sensitive data [Zhang et al. 2011], assign privacy scores to their
credentials [Yao et al. 2008], or configure existing mechanisms according to their privacy
needs [Xiao and Tao 2006]. Some studies work with risk attitudes that are inferred
from user actions via machine learning [Akcora et al. 2012].

Some metrics in our survey combine a technical metric with parameters that are
specified by users to reflect their preferences, for example user-centric privacy (Sec-
tion 5.1.14), coverage of sensitive region (Section 5.8.6), or privacy score (Section 5.2.10).
In general, however, it is an open question how best to integrate user attitudes, be-
haviors, or perceptions with technical metrics. In addition, it is unclear whether this
integration is generally useful, and which scenarios would benefit most.

7.3. Aggregating Metrics
In scenarios with a large number of entities, such as thousands of genomic variations
or users in a communication system, it can be beneficial to aggregate (or compose),
metrics. Some metrics in our survey attempt to do this, for example cumulative entropy
(Section 5.1.10), genomic privacy (Section 5.1.13), health privacy (Section 5.6.5), or
expected estimation error (Section 5.6.1). All of these metrics are based on an addition
of privacy values. Their results are a sum (cumulative entropy, genomic privacy), a
weighted arithmetic mean (health privacy), or an expected value (expected estimation
error). However, depending on the distribution of the underlying population, the arith-
metic mean may lead to biased results [Mashey 2004]. In some situations, a geometric
mean is preferable because it assumes a log-normal, rather than normal, distribution,
and is less biased by outlier values [Citron et al. 2006]. However, in the field of privacy
measurement it is not clear what these situations are. We therefore believe that privacy
research would benefit from a rigorous study of ways to aggregate metrics.

Another option to aggregate privacy values is visualization. When metrics are visu-
alized, a common option is to display averages – the same strategy as with aggregate
metrics. However, more sophisticated plot types can highlight issues such as fairness
that are hidden when averages are used. For example, box plots display the smallest
and largest privacy values as well as the first, second, and third quartile; violin plots
add kernel density plots to visualize the distribution of privacy values. These plots give
more information than aggregate metrics; however, it is unclear how aggregate metrics
can be designed so that the benefits of these plots are preserved.
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7.4. Combining Metrics
Whereas the aggregation of metrics considers values of the same privacy metric for
many entities, the combination of metrics considers values of different privacy metrics
for one entity. Combining different metrics can be useful if the combination retains
the strengths of each metric while reducing their weaknesses. It can also simplify
interpretation to express the performance of a PET with a single number. Metrics in our
survey use three methods to combine metrics: adding sensitivity scores, normalizing
metrics, and extending metrics to new contexts.

Metrics that combine a sensitivity score with a technical metric are user-centric
privacy (using a linear combination, Section 5.1.14) and privacy score (using sensitivity
as a weighting factor, Section 5.2.10). As mentioned in Section 7.2 above, it is not clear
how sensitivity scores and technical metrics can best be combined. In addition, it is not
clear whether the resulting values have a meaningful interpretation.

Metrics that combine two technical metrics typically use one metric to normalize
another, for example normalized entropy (Section 5.1.4), normalized mutual information
(Section 5.2.3), or reduction in observable features (Section 5.2.13). Normalization can
make it easier to interpret privacy measurements, but for some metrics, is is not clear
if and how they can be normalized, or which normalization method works best.

Metrics that adapt a privacy metric so that it can be used in a new context are
computational differential privacy (Section 5.4.9) which adapts differential privacy to a
new adversary type, and entropy combined with Bayesian belief tables to apply entropy
across multiple time-steps (Section 5.1.2). These innovative metrics raise two questions:
first, whether their mechanisms can extend the range of use for other metrics as well,
and second, whether there are other mechanisms that can be used in a similar way to
adapt existing metrics to new use cases.

7.5. Quality of Metrics
We presented a number of quality indicators for privacy metrics in Section 2. While
there is a general consensus that high-quality metrics should be used, there is no
consensus what exactly constitutes high quality and how it should be measured. As a
result, there are few studies investigating the quality of privacy metrics. For example,
in a previous study, we systematically compared 22 metrics for genome privacy and
found that metrics varied greatly with regard to consistency and monotonicity [Wagner
2015; 2017]. Although our study yielded good results for a selection of privacy metrics
in one specific scenario, it was limited in terms of the scenario, quality indicators, and
number of privacy metrics. It is unclear whether the results of our study would hold in
general, and therefore we believe that more studies are needed that rigorously evaluate
the quality and thus the meaningfulness of privacy metrics.

8. CONCLUSION
In this survey we presented a comprehensive review of privacy metrics. We described
and discussed a selection of over eighty privacy metrics using examples from six
different privacy domains.

To structure the complex landscape of privacy metrics, we introduced categorizations
based on the aspect of privacy they measure, their required inputs, and the type of data
that needs protection. In addition, we highlighted topics where we believe additional
work on privacy metrics is needed. This includes research toward the combination and
aggregation of privacy metrics as well as the field of interdependent privacy.

Finally, we presented a method on how to choose privacy metrics based on nine ques-
tions that help identify the right privacy metrics for a given scenario. Most importantly,
we argue for the selection of multiple metrics to cover multiple aspects of privacy. We
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believe that our systematization will serve as a reference guide for privacy metrics that
allows informed choices of suitable privacy metrics and thus serves as a useful toolbox
for privacy researchers.
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