14 research outputs found

    When Are Overcomplete Topic Models Identifiable? Uniqueness of Tensor Tucker Decompositions with Structured Sparsity

    Get PDF
    Overcomplete latent representations have been very popular for unsupervised feature learning in recent years. In this paper, we specify which overcomplete models can be identified given observable moments of a certain order. We consider probabilistic admixture or topic models in the overcomplete regime, where the number of latent topics can greatly exceed the size of the observed word vocabulary. While general overcomplete topic models are not identifiable, we establish generic identifiability under a constraint, referred to as topic persistence. Our sufficient conditions for identifiability involve a novel set of "higher order" expansion conditions on the topic-word matrix or the population structure of the model. This set of higher-order expansion conditions allow for overcomplete models, and require the existence of a perfect matching from latent topics to higher order observed words. We establish that random structured topic models are identifiable w.h.p. in the overcomplete regime. Our identifiability results allows for general (non-degenerate) distributions for modeling the topic proportions, and thus, we can handle arbitrarily correlated topics in our framework. Our identifiability results imply uniqueness of a class of tensor decompositions with structured sparsity which is contained in the class of Tucker decompositions, but is more general than the Candecomp/Parafac (CP) decomposition

    A Clustering Approach to Learning Sparsely Used Overcomplete Dictionaries

    Get PDF
    We consider the problem of learning over complete dictionaries in the context of sparse coding, where each sample selects a sparse subset of dictionary elements. Our main result is a strategy to approximately recover the unknown dictionary using an efficient algorithm. Our algorithm is a clustering-style procedure, where each cluster is used to estimate a dictionary element. The resulting solution can often be further cleaned up to obtain a high accuracy estimate, and we provide one simple scenario where â„“_1-regularized regression can be used for such a second stage

    Guaranteed Non-Orthogonal Tensor Decomposition via Alternating Rank-11 Updates

    Full text link
    In this paper, we provide local and global convergence guarantees for recovering CP (Candecomp/Parafac) tensor decomposition. The main step of the proposed algorithm is a simple alternating rank-11 update which is the alternating version of the tensor power iteration adapted for asymmetric tensors. Local convergence guarantees are established for third order tensors of rank kk in dd dimensions, when k=o(d1.5)k=o \bigl( d^{1.5} \bigr) and the tensor components are incoherent. Thus, we can recover overcomplete tensor decomposition. We also strengthen the results to global convergence guarantees under stricter rank condition k≤βdk \le \beta d (for arbitrary constant β>1\beta > 1) through a simple initialization procedure where the algorithm is initialized by top singular vectors of random tensor slices. Furthermore, the approximate local convergence guarantees for pp-th order tensors are also provided under rank condition k=o(dp/2)k=o \bigl( d^{p/2} \bigr). The guarantees also include tight perturbation analysis given noisy tensor.Comment: We have added an additional sub-algorithm to remove the (approximate) residual error left after the tensor power iteratio
    corecore