172,683 research outputs found

    Structures in supercritical scale-free percolation

    Get PDF
    Scale-free percolation is a percolation model on Zd\mathbb{Z}^d which can be used to model real-world networks. We prove bounds for the graph distance in the regime where vertices have infinite degrees. We fully characterize transience vs. recurrence for dimension 1 and 2 and give sufficient conditions for transience in dimension 3 and higher. Finally, we show the existence of a hierarchical structure for parameters where vertices have degrees with infinite variance and obtain bounds on the cluster density.Comment: Revised Definition 2.5 and an argument in Section 6, results are unchanged. Correction of minor typos. 29 pages, 7 figure

    On the Smallest Eigenvalue of Grounded Laplacian Matrices

    Full text link
    We provide upper and lower bounds on the smallest eigenvalue of grounded Laplacian matrices (which are matrices obtained by removing certain rows and columns of the Laplacian matrix of a given graph). The gap between the upper and lower bounds depends on the ratio of the smallest and largest components of the eigenvector corresponding to the smallest eigenvalue of the grounded Laplacian. We provide a graph-theoretic bound on this ratio, and subsequently obtain a tight characterization of the smallest eigenvalue for certain classes of graphs. Specifically, for Erdos-Renyi random graphs, we show that when a (sufficiently small) set SS of rows and columns is removed from the Laplacian, and the probability pp of adding an edge is sufficiently large, the smallest eigenvalue of the grounded Laplacian asymptotically almost surely approaches ∣S∣p|S|p. We also show that for random dd-regular graphs with a single row and column removed, the smallest eigenvalue is Θ(dn)\Theta(\frac{d}{n}). Our bounds have applications to the study of the convergence rate in continuous-time and discrete-time consensus dynamics with stubborn or leader nodes
    • …
    corecore