3 research outputs found

    Defeasible RDFS via Rational Closure

    Full text link
    In the field of non-monotonic logics, the notion of Rational Closure (RC) is acknowledged as a prominent approach. In recent years, RC has gained even more popularity in the context of Description Logics (DLs), the logic underpinning the semantic web standard ontology language OWL 2, whose main ingredients are classes and roles. In this work, we show how to integrate RC within the triple language RDFS, which together with OWL2 are the two major standard semantic web ontology languages. To do so, we start from ρdf\rho df, which is the logic behind RDFS, and then extend it to ρdf\rho df_\bot, allowing to state that two entities are incompatible. Eventually, we propose defeasible ρdf\rho df_\bot via a typical RC construction. The main features of our approach are: (i) unlike most other approaches that add an extra non-monotone rule layer on top of monotone RDFS, defeasible ρdf\rho df_\bot remains syntactically a triple language and is a simple extension of ρdf\rho df_\bot by introducing some new predicate symbols with specific semantics. In particular, any RDFS reasoner/store may handle them as ordinary terms if it does not want to take account for the extra semantics of the new predicate symbols; (ii) the defeasible ρdf\rho df_\bot entailment decision procedure is build on top of the ρdf\rho df_\bot entailment decision procedure, which in turn is an extension of the one for ρdf\rho df via some additional inference rules favouring an potential implementation; and (iii) defeasible ρdf\rho df_\bot entailment can be decided in polynomial time.Comment: 47 pages. Preprint versio

    From iterated revision to iterated contraction: extending the Harper Identity

    Get PDF
    The study of iterated belief change has principally focused on revision, with the other main operator of AGM belief change theory, namely contraction, receiving comparatively little attention. In this paper we show how principles of iterated revision can be carried over to iterated contraction by generalising a principle known as the ‘Harper Identity’. The Harper Identity provides a recipe for defining the belief set resulting from contraction by a sentence A in terms of (i) the initial belief set and (ii) the belief set resulting from revision by ¬A. Here, we look at ways to similarly define the conditional belief set resulting from contraction by A. After noting that the most straightforward proposal of this kind leads to triviality, we characterise a promising family of alternative suggestions that avoid such a result. One member of that family, which involves the operation of rational closure, is noted to be particularly theoretically fruitful and normatively appealing
    corecore