35,331 research outputs found

    Foveated Video Streaming for Cloud Gaming

    Full text link
    Good user experience with interactive cloud-based multimedia applications, such as cloud gaming and cloud-based VR, requires low end-to-end latency and large amounts of downstream network bandwidth at the same time. In this paper, we present a foveated video streaming system for cloud gaming. The system adapts video stream quality by adjusting the encoding parameters on the fly to match the player's gaze position. We conduct measurements with a prototype that we developed for a cloud gaming system in conjunction with eye tracker hardware. Evaluation results suggest that such foveated streaming can reduce bandwidth requirements by even more than 50% depending on parametrization of the foveated video coding and that it is feasible from the latency perspective.Comment: Submitted to: IEEE 19th International Workshop on Multimedia Signal Processin

    What Is Wrong with the No-Report Paradigm and How to Fix It

    Get PDF
    Is consciousness based in prefrontal circuits involved in cognitive processes like thought, reasoning, and memory or, alternatively, is it based in sensory areas in the back of the neocortex? The no-report paradigm has been crucial to this debate because it aims to separate the neural basis of the cognitive processes underlying post-perceptual decision and report from the neural basis of conscious perception itself. However, the no-report paradigm is problematic because, even in the absence of report, subjects might engage in post-perceptual cognitive processing. Therefore, to isolate the neural basis of consciousness, a no-cognition paradigm is needed. Here, I describe a no-cognition approach to binocular rivalry and outline how this approach can help resolve debates about the neural basis of consciousness

    ARTSCENE: A Neural System for Natural Scene Classification

    Full text link
    How do humans rapidly recognize a scene? How can neural models capture this biological competence to achieve state-of-the-art scene classification? The ARTSCENE neural system classifies natural scene photographs by using multiple spatial scales to efficiently accumulate evidence for gist and texture. ARTSCENE embodies a coarse-to-fine Texture Size Ranking Principle whereby spatial attention processes multiple scales of scenic information, ranging from global gist to local properties of textures. The model can incrementally learn and predict scene identity by gist information alone and can improve performance through selective attention to scenic textures of progressively smaller size. ARTSCENE discriminates 4 landscape scene categories (coast, forest, mountain and countryside) with up to 91.58% correct on a test set, outperforms alternative models in the literature which use biologically implausible computations, and outperforms component systems that use either gist or texture information alone. Model simulations also show that adjacent textures form higher-order features that are also informative for scene recognition.National Science Foundation (NSF SBE-0354378); Office of Naval Research (N00014-01-1-0624

    Apparent sharpness of 3D video when one eye's view is more blurry.

    Get PDF
    When the images presented to each eye differ in sharpness, the fused percept remains relatively sharp. Here, we measure this effect by showing stereoscopic videos that have been blurred for one eye, or both eyes, and psychophysically determining when they appear equally sharp. For a range of blur magnitudes, the fused percept always appeared significantly sharper than the blurrier view. From these data, we investigate to what extent discarding high spatial frequencies from just one eye's view reduces the bandwidth necessary to transmit perceptually sharp 3D content. We conclude that relatively high-resolution video transmission has the most potential benefit from this method
    • …
    corecore