6 research outputs found

    Supporting Streams of Changes during Branch Integration

    Get PDF
    International audienceWhen developing large applications, integrators face the problem of integrating changes between branches or forks. While version control systems provide support for merging changes, this support is mostly text-based, and does not take the program entities into account. Furthermore, there exists no support for assessing which other changes a particular change depends on have to be integrated. Consequently, integrators are left to perform a manual and tedious comparison of the changes within the sequence of their branch and to successfully integrate them. In this paper, we present an approach that analyzes changes within a sequence of changes (stream of changes): such analysis identifies and characterizes dependencies between the changes. The approach identifies changes as autonomous, only used by others, only using other changes, or both. Such a characterization aims at easing the integrator's work. In addition, the approach supports important queries that an integrator otherwise has to perform manually. We applied the approach to a stream of changes representing 5 years of development work on an open- source project and report our experiences

    プログラムの解析、テスト、修復のための表現学習

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学特任准教授 松尾 豊, 東京大学教授 和泉 潔, 東京大学准教授 阿部 力也, 東京大学准教授 森 純一郎, 国立情報学研究所教授 蓮尾 一郎University of Tokyo(東京大学

    Mining and untangling change genealogies

    Get PDF
    Developers change source code to add new functionality, fix bugs, or refactor their code. Many of these changes have immediate impact on quality or stability. However, some impact of changes may become evident only in the long term. This thesis makes use of change genealogy dependency graphs modeling dependencies between code changes capturing how earlier changes enable and cause later ones. Using change genealogies, it is possible to: (a) applyformalmethodslikemodelcheckingonversionarchivestorevealtemporal process patterns. Such patterns encode key features of the software process and can be validated automatically: In an evaluation of four open source histories, our prototype would recommend pending activities with a precision of 60—72%. (b) classify the purpose of code changes. Analyzing the change dependencies on change genealogies shows that change genealogy network metrics can be used to automatically separate bug fixing from feature implementing code changes. (c) build competitive defect prediction models. Defect prediction models based on change genealogy network metrics show competitive prediction accuracy when compared to state-of-the-art defect prediction models. As many other approaches mining version archives, change genealogies and their applications rely on two basic assumptions: code changes are considered to be atomic and bug reports are considered to refer to corrective maintenance tasks. In a manual examination of more than 7,000 issue reports and code changes from bug databases and version control systems of open- source projects, we found 34% of all issue reports to be misclassified and that up to 15% of all applied issue fixes consist of multiple combined code changes serving multiple developer maintenance tasks. This introduces bias in bug prediction models confusing bugs and features. To partially solve these issues we present an approach to untangle such combined changes with a mean success rate of 58—90% after the fact.Softwareentwickler ändern Source-Code um neue Funktionalität hinzuzufügen, Bugs zu beheben oder um ihren Code zu restrukturieren. Viele dieser Änderungen haben einen direkten Einfluss auf Qualität und Stabilität des Softwareprodukts. Jedoch kommen einige dieser Einflüsse erst zu einem späteren Zeitpunkt zur Geltung. Diese Arbeit verwendet Genealogien zwischen Code-Änderungen um zu erfassen, wie frühere Änderungen spätere Änderungen erfordern oder ermöglichen. Die Verwendung von Änderungs-Genealogien ermöglicht: (a) die Anwendung formaler Methoden wie Model-Checking auf Versionsarchive um temporäre Prozessmuster zu erkennen. Solche Prozessmuster verdeutlichen Hauptmerkmale eines Softwareentwicklungsprozesses: In einer Evaluation auf vier Open-Source Projekten war unser Prototyp im Stande noch ausstehende Änderungen mit einer Präzision von 60–72% vorherzusagen. (b) die Absicht einer Code-Änderung zu bestimmen. Analysen von Änderungsabhängigkeiten zeigen, dass Netzwerkmetriken auf Änderungsgenealogien geeignet sind um fehlerbehebende Änderungen von Änderungen die eine Funktionalität hinzufügen zu trennen. (c) konkurrenzfähige Fehlervorhersagen zu erstellen. Fehlervorhersagen basierend auf Genealogie-Metriken können sich mit anerkannten Fehlervorhersagemodellen messen. Änderungs-Genealogien und deren Anwendungen basieren, wie andere Data-Mining Ansätze auch, auf zwei fundamentalen Annahmen: Code-Änderungen beabsichtigen die Lösung nur eines Problems und Bug-Reports weisen auf Fehler korrigierende Tätigkeiten hin. Eine manuelle Inspektion von mehr als 7.000 Issue-Reports und Code-Änderungen hat ergeben, dass 34% aller Issue-Reports falsch klassifiziert sind und dass bis zu 15% aller fehlerbehebender Änderungen mehr als nur einem Entwicklungs-Task dienen. Dies wirkt sich negativ auf Vorhersagemodelle aus, die nicht mehr klar zwischen Bug-Fixes und anderen Änderungen unterscheiden können. Als Lösungsansatz stellen wir einen Algorithmus vor, der solche nicht eindeutigen Änderungen mit einer Erfolgsrate von 58–90% entwirrt

    What is the long-term impact of changes?

    No full text
    corecore