5 research outputs found

    Learning Generalized Reactive Policies using Deep Neural Networks

    Full text link
    We present a new approach to learning for planning, where knowledge acquired while solving a given set of planning problems is used to plan faster in related, but new problem instances. We show that a deep neural network can be used to learn and represent a \emph{generalized reactive policy} (GRP) that maps a problem instance and a state to an action, and that the learned GRPs efficiently solve large classes of challenging problem instances. In contrast to prior efforts in this direction, our approach significantly reduces the dependence of learning on handcrafted domain knowledge or feature selection. Instead, the GRP is trained from scratch using a set of successful execution traces. We show that our approach can also be used to automatically learn a heuristic function that can be used in directed search algorithms. We evaluate our approach using an extensive suite of experiments on two challenging planning problem domains and show that our approach facilitates learning complex decision making policies and powerful heuristic functions with minimal human input. Videos of our results are available at goo.gl/Hpy4e3

    What good are actions? Accelerating learning using learned action priors

    No full text

    Accelerating decision making under partial observability using learned action priors

    Get PDF
    Thesis (M.Sc.)--University of the Witwatersrand, Faculty of Science, School of Computer Science and Applied Mathematics, 2017.Partially Observable Markov Decision Processes (POMDPs) provide a principled mathematical framework allowing a robot to reason about the consequences of actions and observations with respect to the agent's limited perception of its environment. They allow an agent to plan and act optimally in uncertain environments. Although they have been successfully applied to various robotic tasks, they are infamous for their high computational cost. This thesis demonstrates the use of knowledge transfer, learned from previous experiences, to accelerate the learning of POMDP tasks. We propose that in order for an agent to learn to solve these tasks quicker, it must be able to generalise from past behaviours and transfer knowledge, learned from solving multiple tasks, between di erent circumstances. We present a method for accelerating this learning process by learning the statistics of action choices over the lifetime of an agent, known as action priors. Action priors specify the usefulness of actions in situations and allow us to bias exploration, which in turn improves the performance of the learning process. Using navigation domains, we study the degree to which transferring knowledge between tasks in this way results in a considerable speed up in solution times. This thesis therefore makes the following contributions. We provide an algorithm for learning action priors from a set of approximately optimal value functions and two approaches with which a prior knowledge over actions can be used in a POMDP context. As such, we show that considerable gains in speed can be achieved in learning subsequent tasks using prior knowledge rather than learning from scratch. Learning with action priors can particularly be useful in reducing the cost of exploration in the early stages of the learning process as the priors can act as mechanism that allows the agent to select more useful actions given particular circumstances. Thus, we demonstrate how the initial losses associated with unguided exploration can be alleviated through the use of action priors which allow for safer exploration. Additionally, we illustrate that action priors can also improve the computation speeds of learning feasible policies in a shorter period of time.MT201
    corecore