30 research outputs found

    Mitigating Gender Bias in Machine Learning Data Sets

    Full text link
    Artificial Intelligence has the capacity to amplify and perpetuate societal biases and presents profound ethical implications for society. Gender bias has been identified in the context of employment advertising and recruitment tools, due to their reliance on underlying language processing and recommendation algorithms. Attempts to address such issues have involved testing learned associations, integrating concepts of fairness to machine learning and performing more rigorous analysis of training data. Mitigating bias when algorithms are trained on textual data is particularly challenging given the complex way gender ideology is embedded in language. This paper proposes a framework for the identification of gender bias in training data for machine learning.The work draws upon gender theory and sociolinguistics to systematically indicate levels of bias in textual training data and associated neural word embedding models, thus highlighting pathways for both removing bias from training data and critically assessing its impact.Comment: 10 pages, 5 figures, 5 Tables, Presented as Bias2020 workshop (as part of the ECIR Conference) - http://bias.disim.univaq.i

    Adversarial Reweighting for Speaker Verification Fairness

    Full text link
    We address performance fairness for speaker verification using the adversarial reweighting (ARW) method. ARW is reformulated for speaker verification with metric learning, and shown to improve results across different subgroups of gender and nationality, without requiring annotation of subgroups in the training data. An adversarial network learns a weight for each training sample in the batch so that the main learner is forced to focus on poorly performing instances. Using a min-max optimization algorithm, this method improves overall speaker verification fairness. We present three different ARWformulations: accumulated pairwise similarity, pseudo-labeling, and pairwise weighting, and measure their performance in terms of equal error rate (EER) on the VoxCeleb corpus. Results show that the pairwise weighting method can achieve 1.08% overall EER, 1.25% for male and 0.67% for female speakers, with relative EER reductions of 7.7%, 10.1% and 3.0%, respectively. For nationality subgroups, the proposed algorithm showed 1.04% EER for US speakers, 0.76% for UK speakers, and 1.22% for all others. The absolute EER gap between gender groups was reduced from 0.70% to 0.58%, while the standard deviation over nationality groups decreased from 0.21 to 0.19

    Language (Technology) is Power: A Critical Survey of "Bias" in NLP

    Full text link
    We survey 146 papers analyzing "bias" in NLP systems, finding that their motivations are often vague, inconsistent, and lacking in normative reasoning, despite the fact that analyzing "bias" is an inherently normative process. We further find that these papers' proposed quantitative techniques for measuring or mitigating "bias" are poorly matched to their motivations and do not engage with the relevant literature outside of NLP. Based on these findings, we describe the beginnings of a path forward by proposing three recommendations that should guide work analyzing "bias" in NLP systems. These recommendations rest on a greater recognition of the relationships between language and social hierarchies, encouraging researchers and practitioners to articulate their conceptualizations of "bias"---i.e., what kinds of system behaviors are harmful, in what ways, to whom, and why, as well as the normative reasoning underlying these statements---and to center work around the lived experiences of members of communities affected by NLP systems, while interrogating and reimagining the power relations between technologists and such communities

    Mark my Word: A Sequence-to-Sequence Approach to Definition Modeling

    Get PDF
    International audienceDefining words in a textual context is a useful task both for practical purposes and for gaining insight into distributed word representations. Building on the distribu-tional hypothesis, we argue here that the most natural formalization of definition modeling is to treat it as a sequence-to-sequence task, rather than a word-to-sequence task: given an input sequence with a highlighted word, generate a con-textually appropriate definition for it. We implement this approach in a Transformer-based sequence-to-sequence model. Our proposal allows to train contextualization and definition generation in an end-to-end fashion, which is a conceptual improvement over earlier works. We achieve state-of-the-art results both in contextual and non-contextual definition modeling
    corecore