73,424 research outputs found

    Principal arc analysis on direct product manifolds

    Get PDF
    We propose a new approach to analyze data that naturally lie on manifolds. We focus on a special class of manifolds, called direct product manifolds, whose intrinsic dimension could be very high. Our method finds a low-dimensional representation of the manifold that can be used to find and visualize the principal modes of variation of the data, as Principal Component Analysis (PCA) does in linear spaces. The proposed method improves upon earlier manifold extensions of PCA by more concisely capturing important nonlinear modes. For the special case of data on a sphere, variation following nongeodesic arcs is captured in a single mode, compared to the two modes needed by previous methods. Several computational and statistical challenges are resolved. The development on spheres forms the basis of principal arc analysis on more complicated manifolds. The benefits of the method are illustrated by a data example using medial representations in image analysis.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS370 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Scale-discretised ridgelet transform on the sphere

    Get PDF
    We revisit the spherical Radon transform, also called the Funk-Radon transform, viewing it as an axisymmetric convolution on the sphere. Viewing the spherical Radon transform in this manner leads to a straightforward derivation of its spherical harmonic representation, from which we show the spherical Radon transform can be inverted exactly for signals exhibiting antipodal symmetry. We then construct a spherical ridgelet transform by composing the spherical Radon and scale-discretised wavelet transforms on the sphere. The resulting spherical ridgelet transform also admits exact inversion for antipodal signals. The restriction to antipodal signals is expected since the spherical Radon and ridgelet transforms themselves result in signals that exhibit antipodal symmetry. Our ridgelet transform is defined natively on the sphere, probes signal content globally along great circles, does not exhibit blocking artefacts, supports spin signals and exhibits an exact and explicit inverse transform. No alternative ridgelet construction on the sphere satisfies all of these properties. Our implementation of the spherical Radon and ridgelet transforms is made publicly available. Finally, we illustrate the effectiveness of spherical ridgelets for diffusion magnetic resonance imaging of white matter fibers in the brain.Comment: 5 pages, 4 figures, matches version accepted by EUSIPCO, code available at http://www.s2let.or

    On the multiplicity of arrangements of congruent zones on the sphere

    Full text link
    Consider an arrangement of nn congruent zones on the dd-dimensional unit sphere Sd1S^{d-1}, where a zone is the intersection of an origin symmetric Euclidean plank with Sd1S^{d-1}. We prove that, for sufficiently large nn, it is possible to arrange nn congruent zones of suitable width on Sd1S^{d-1} such that no point belongs to more than a constant number of zones, where the constant depends only on the dimension and the width of the zones. Furthermore, we also show that it is possible to cover Sd1S^{d-1} by nn congruent zones such that each point of Sd1S^{d-1} belongs to at most AdlnnA_d\ln n zones, where the AdA_d is a constant that depends only on dd. This extends the corresponding 33-dimensional result of Frankl, Nagy and Nasz\'odi (2016). Moreover, we also examine coverings of Sd1S^{d-1} with congruent zones under the condition that each point of the sphere belongs to the interior of at most d1d-1 zones

    Front dynamics in turbulent media

    Get PDF
    A study of a stable front propagating in a turbulent medium is presented. The front is generated through a reaction-diffusion equation, and the turbulent medium is statistically modeled using a Langevin equation. Numerical simulations indicate the presence of two different dynamical regimes. These regimes appear when the turbulent flow either wrinkles a still rather sharp propagating interfase or broadens it. Specific dependences of the propagating velocities on stirring intensities appropriate to each case are found and fitted when possible according to theoretically predicted laws. Different turbulent spectra are considered.Comment: 8 pages, REVTEX, 6 postscript figures included. To appear in Phys. Fluids (1997

    Spatial distribution and statistical properties of small-scale convective vortex-like motions in a quiet Sun region

    Get PDF
    High-resolution observations of a quiet Sun internetwork region taken with the Solar 1-m Swedish Telescope in La Palma are analyzed. We determine the location of small-scale vortex motions in the solar photospheric region by computing the horizontal proper motions of small-scale structures on time series of images. These plasma convectively-driven swirl motions are associated to: (1) downdrafts (that have been commonly explained as corresponding to sites where the plasma is cooled down and hence returned to the interior below the visible photospheric level), and (2) horizontal velocity vectors converging into a central point. The sink cores are proved to be the final destination of passive floats tracing plasma flows towards the center of each vortex. We establish the occurrence of these events to be 1.4 x 10^(-3) and 1.6 x 10^(-3) vortices Mm^(-2) min^(-1) respectively for two time series analyzed here.Comment: 8 pages, 6 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Societ
    corecore