48 research outputs found

    Welfare Guarantees for Combinatorial Auctions with Item Bidding

    Full text link

    On the Efficiency of the Proportional Allocation Mechanism for Divisible Resources

    Get PDF
    We study the efficiency of the proportional allocation mechanism, that is widely used to allocate divisible resources. Each agent submits a bid for each divisible resource and receives a fraction proportional to her bids. We quantify the inefficiency of Nash equilibria by studying the Price of Anarchy (PoA) of the induced game under complete and incomplete information. When agents' valuations are concave, we show that the Bayesian Nash equilibria can be arbitrarily inefficient, in contrast to the well-known 4/3 bound for pure equilibria. Next, we upper bound the PoA over Bayesian equilibria by 2 when agents' valuations are subadditive, generalizing and strengthening previous bounds on lattice submodular valuations. Furthermore, we show that this bound is tight and cannot be improved by any simple or scale-free mechanism. Then we switch to settings with budget constraints, and we show an improved upper bound on the PoA over coarse-correlated equilibria. Finally, we prove that the PoA is exactly 2 for pure equilibria in the polyhedral environment.Comment: To appear in SAGT 201

    Valuation Compressions in VCG-Based Combinatorial Auctions

    Full text link
    The focus of classic mechanism design has been on truthful direct-revelation mechanisms. In the context of combinatorial auctions the truthful direct-revelation mechanism that maximizes social welfare is the VCG mechanism. For many valuation spaces computing the allocation and payments of the VCG mechanism, however, is a computationally hard problem. We thus study the performance of the VCG mechanism when bidders are forced to choose bids from a subspace of the valuation space for which the VCG outcome can be computed efficiently. We prove improved upper bounds on the welfare loss for restrictions to additive bids and upper and lower bounds for restrictions to non-additive bids. These bounds show that the welfare loss increases in expressiveness. All our bounds apply to equilibrium concepts that can be computed in polynomial time as well as to learning outcomes

    Expressiveness and Robustness of First-Price Position Auctions

    Get PDF
    Since economic mechanisms are often applied to very different instances of the same problem, it is desirable to identify mechanisms that work well in a wide range of circumstances. We pursue this goal for a position auction setting and specifically seek mechanisms that guarantee good outcomes under both complete and incomplete information. A variant of the generalized first-price mechanism with multi-dimensional bids turns out to be the only standard mechanism able to achieve this goal, even when types are one-dimensional. The fact that expressiveness beyond the type space is both necessary and sufficient for this kind of robustness provides an interesting counterpoint to previous work on position auctions that has highlighted the benefits of simplicity. From a technical perspective our results are interesting because they establish equilibrium existence for a multi-dimensional bid space, where standard techniques break down. The structure of the equilibrium bids moreover provides an intuitive explanation for why first-price payments may be able to support equilibria in a wider range of circumstances than second-price payments

    On the Efficiency of the Walrasian Mechanism

    Full text link
    Central results in economics guarantee the existence of efficient equilibria for various classes of markets. An underlying assumption in early work is that agents are price-takers, i.e., agents honestly report their true demand in response to prices. A line of research in economics, initiated by Hurwicz (1972), is devoted to understanding how such markets perform when agents are strategic about their demands. This is captured by the \emph{Walrasian Mechanism} that proceeds by collecting reported demands, finding clearing prices in the \emph{reported} market via an ascending price t\^{a}tonnement procedure, and returns the resulting allocation. Similar mechanisms are used, for example, in the daily opening of the New York Stock Exchange and the call market for copper and gold in London. In practice, it is commonly observed that agents in such markets reduce their demand leading to behaviors resembling bargaining and to inefficient outcomes. We ask how inefficient the equilibria can be. Our main result is that the welfare of every pure Nash equilibrium of the Walrasian mechanism is at least one quarter of the optimal welfare, when players have gross substitute valuations and do not overbid. Previous analysis of the Walrasian mechanism have resorted to large market assumptions to show convergence to efficiency in the limit. Our result shows that approximate efficiency is guaranteed regardless of the size of the market

    Stability and auctions in labor markets with job security

    Get PDF
    Fu et al. (2016) introduced a stability concept for labor markets with job security. We show that their proposed outcomes form Nash equilibria of an auction where firms compete for workers. This parallels literature on stable outcomes and similar auctions, and yields new price of anarchy bounds
    corecore