91 research outputs found

    A Survey on Graph Kernels

    Get PDF
    Graph kernels have become an established and widely-used technique for solving classification tasks on graphs. This survey gives a comprehensive overview of techniques for kernel-based graph classification developed in the past 15 years. We describe and categorize graph kernels based on properties inherent to their design, such as the nature of their extracted graph features, their method of computation and their applicability to problems in practice. In an extensive experimental evaluation, we study the classification accuracy of a large suite of graph kernels on established benchmarks as well as new datasets. We compare the performance of popular kernels with several baseline methods and study the effect of applying a Gaussian RBF kernel to the metric induced by a graph kernel. In doing so, we find that simple baselines become competitive after this transformation on some datasets. Moreover, we study the extent to which existing graph kernels agree in their predictions (and prediction errors) and obtain a data-driven categorization of kernels as result. Finally, based on our experimental results, we derive a practitioner's guide to kernel-based graph classification

    Reduction Techniques for Graph Isomorphism in the Context of Width Parameters

    Full text link
    We study the parameterized complexity of the graph isomorphism problem when parameterized by width parameters related to tree decompositions. We apply the following technique to obtain fixed-parameter tractability for such parameters. We first compute an isomorphism invariant set of potential bags for a decomposition and then apply a restricted version of the Weisfeiler-Lehman algorithm to solve isomorphism. With this we show fixed-parameter tractability for several parameters and provide a unified explanation for various isomorphism results concerned with parameters related to tree decompositions. As a possibly first step towards intractability results for parameterized graph isomorphism we develop an fpt Turing-reduction from strong tree width to the a priori unrelated parameter maximum degree.Comment: 23 pages, 4 figure

    The Iteration Number of Colour Refinement

    Get PDF
    The Colour Refinement procedure and its generalisation to higher dimensions, the Weisfeiler-Leman algorithm, are central subroutines in approaches to the graph isomorphism problem. In an iterative fashion, Colour Refinement computes a colouring of the vertices of its input graph. A trivial upper bound on the iteration number of Colour Refinement on graphs of order n is n-1. We show that this bound is tight. More precisely, we prove via explicit constructions that there are infinitely many graphs G on which Colour Refinement takes |G|-1 iterations to stabilise. Modifying the infinite families that we present, we show that for every natural number n ? 10, there are graphs on n vertices on which Colour Refinement requires at least n-2 iterations to reach stabilisation
    • …
    corecore