6,010 research outputs found

    Symbolic Exact Inference for Discrete Probabilistic Programs

    Full text link
    The computational burden of probabilistic inference remains a hurdle for applying probabilistic programming languages to practical problems of interest. In this work, we provide a semantic and algorithmic foundation for efficient exact inference on discrete-valued finite-domain imperative probabilistic programs. We leverage and generalize efficient inference procedures for Bayesian networks, which exploit the structure of the network to decompose the inference task, thereby avoiding full path enumeration. To do this, we first compile probabilistic programs to a symbolic representation. Then we adapt techniques from the probabilistic logic programming and artificial intelligence communities in order to perform inference on the symbolic representation. We formalize our approach, prove it sound, and experimentally validate it against existing exact and approximate inference techniques. We show that our inference approach is competitive with inference procedures specialized for Bayesian networks, thereby expanding the class of probabilistic programs that can be practically analyzed

    Model Counting of Query Expressions: Limitations of Propositional Methods

    Full text link
    Query evaluation in tuple-independent probabilistic databases is the problem of computing the probability of an answer to a query given independent probabilities of the individual tuples in a database instance. There are two main approaches to this problem: (1) in `grounded inference' one first obtains the lineage for the query and database instance as a Boolean formula, then performs weighted model counting on the lineage (i.e., computes the probability of the lineage given probabilities of its independent Boolean variables); (2) in methods known as `lifted inference' or `extensional query evaluation', one exploits the high-level structure of the query as a first-order formula. Although it is widely believed that lifted inference is strictly more powerful than grounded inference on the lineage alone, no formal separation has previously been shown for query evaluation. In this paper we show such a formal separation for the first time. We exhibit a class of queries for which model counting can be done in polynomial time using extensional query evaluation, whereas the algorithms used in state-of-the-art exact model counters on their lineages provably require exponential time. Our lower bounds on the running times of these exact model counters follow from new exponential size lower bounds on the kinds of d-DNNF representations of the lineages that these model counters (either explicitly or implicitly) produce. Though some of these queries have been studied before, no non-trivial lower bounds on the sizes of these representations for these queries were previously known.Comment: To appear in International Conference on Database Theory (ICDT) 201

    Learning Task Specifications from Demonstrations

    Full text link
    Real world applications often naturally decompose into several sub-tasks. In many settings (e.g., robotics) demonstrations provide a natural way to specify the sub-tasks. However, most methods for learning from demonstrations either do not provide guarantees that the artifacts learned for the sub-tasks can be safely recombined or limit the types of composition available. Motivated by this deficit, we consider the problem of inferring Boolean non-Markovian rewards (also known as logical trace properties or specifications) from demonstrations provided by an agent operating in an uncertain, stochastic environment. Crucially, specifications admit well-defined composition rules that are typically easy to interpret. In this paper, we formulate the specification inference task as a maximum a posteriori (MAP) probability inference problem, apply the principle of maximum entropy to derive an analytic demonstration likelihood model and give an efficient approach to search for the most likely specification in a large candidate pool of specifications. In our experiments, we demonstrate how learning specifications can help avoid common problems that often arise due to ad-hoc reward composition.Comment: NIPS 201
    • …
    corecore