10,203 research outputs found

    Weighted Markov Decision Processes with perturbation

    Get PDF
    In this paper we consider the weighted reward MDP’s with perturbation. We give the proof of existence of a delta-optimal simple ultimately deterministic policy under the assumption of “scalar value”. We also prove that there exists a delta-i-optimal simple ultimately deterministic policy in the perturbed weighted MDP, for all e E [0, e*) even without the assumption of “scalar value”

    Reduction of Markov Chains using a Value-of-Information-Based Approach

    Full text link
    In this paper, we propose an approach to obtain reduced-order models of Markov chains. Our approach is composed of two information-theoretic processes. The first is a means of comparing pairs of stationary chains on different state spaces, which is done via the negative Kullback-Leibler divergence defined on a model joint space. Model reduction is achieved by solving a value-of-information criterion with respect to this divergence. Optimizing the criterion leads to a probabilistic partitioning of the states in the high-order Markov chain. A single free parameter that emerges through the optimization process dictates both the partition uncertainty and the number of state groups. We provide a data-driven means of choosing the `optimal' value of this free parameter, which sidesteps needing to a priori know the number of state groups in an arbitrary chain.Comment: Submitted to Entrop

    Robustness of large-scale stochastic matrices to localized perturbations

    Get PDF
    Upper bounds are derived on the total variation distance between the invariant distributions of two stochastic matrices differing on a subset W of rows. Such bounds depend on three parameters: the mixing time and the minimal expected hitting time on W for the Markov chain associated to one of the matrices; and the escape time from W for the Markov chain associated to the other matrix. These results, obtained through coupling techniques, prove particularly useful in scenarios where W is a small subset of the state space, even if the difference between the two matrices is not small in any norm. Several applications to large-scale network problems are discussed, including robustness of Google's PageRank algorithm, distributed averaging and consensus algorithms, and interacting particle systems.Comment: 12 pages, 4 figure

    Learning policies for Markov decision processes from data

    Full text link
    We consider the problem of learning a policy for a Markov decision process consistent with data captured on the state-actions pairs followed by the policy. We assume that the policy belongs to a class of parameterized policies which are defined using features associated with the state-action pairs. The features are known a priori, however, only an unknown subset of them could be relevant. The policy parameters that correspond to an observed target policy are recovered using `1-regularized logistic regression that best fits the observed state-action samples. We establish bounds on the difference between the average reward of the estimated and the original policy (regret) in terms of the generalization error and the ergodic coefficient of the underlying Markov chain. To that end, we combine sample complexity theory and sensitivity analysis of the stationary distribution of Markov chains. Our analysis suggests that to achieve regret within order O( √ ), it suffices to use training sample size on the order of Ω(logn · poly(1/ )), where n is the number of the features. We demonstrate the effectiveness of our method on a synthetic robot navigation example
    corecore