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Abstract 

In this paper we consider the weighted reward WIDP’s 
with perturbation. We give the proof of existence of a 
6-optimal simple ultimately deterministic policy un- 
der the assumption of “scalar value”. We also prove 
that there exists a 6-i-optimal simple ultimately de- 
terministic policy in the perturbed weighted MDP, for 
all E E [0, E * )  even without the assumption of “scalar 
value”. 

1. Introduction 

A discrete Markov Decision Process (MDP, for short) 
r can be informally described as follows: ,4t time 
points t = 0,1,2,. . ., a process r is observed and 
decision maker finds himself in some state i with a 
choice of available actions. Choosing a particular ac- 
tion, a,  results in two things: (i) an immediate reward 
r ( i ,  U )  is accrued which depends on the current state 
and the action chosen, and, (ii) the process I? moves 
to state j ,  with transition probability p ( j  I ; , a )  de- 
pending on the current state, destination state and 
the chosen action. The successive immediate rewards 
obtained during the infinite t h e  horizon are aggre- 
gated according to some overall reward criterion (e.g. 
future rewards might be discounted). The goal is to 
choose a policy (a course of action) that maximizes 
the overall reward criterion. 

Let S be the finite state space and N =I S 1, A(i) 
the finite set of actions available at state i ,  and A = 
U { A ( i )  I i E S}. Then r is synonymous with the 
four-tuple: r = ( S , A , p , r ) ,  where p is the family of 
transition probabilities p = { p ( j  I i ,a)  : ( i , a , j , )  E 
S x A(i)  x S} ,  and r is the collection of rewards r = 
{ r ( i , a )  : ( i , a )  E S x A(i)} .  A decision rule, nt at 
time t ,  is a function which assigns a probability to the 
event that any particular action a is taken at time t. 
In general 7rt may depend on all realized states up to 
and including time t ,  and on all realized actions up 
t,o time t - 1. 
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Let ( X i ,  U ; )  be the random variables representing 
respectively the state and action at time t. Let h,, 
= ( i o ,  U O ,  i l , a l , .  . . , at-1, it,) be the h~istory up to time 
t ,  where a0 E A(io), . . ., at-l E A(it-l), and i k  E 
S, k = O , 1 , .  . . , t ,  then R~(. I h.t) is a probability dis- 
tribution on A(&),  that is r t ( a t  I hi) is the proha- 
bility of selecting the action at at time t ,  given the 
history hi. A policy R is a sequence of decision rules 
R = ( R O , R ~ ,  ... , ~ t  ,... ). A Markov policy is one in 
which Rt depends only on the “current” state at time 
t ,  i t .  A stationary policy R which can be denoted by 
?r = (RF) is a Markov policy with identical decision 
rules. A deterministic policy T is a stationary policy 
whose single decision rule is nonrandomized. 

Let C,C(M),C(S)  and C ( D )  denote the sets of 
all policies, all Markov policies, all stationary policies 
and all deterministic policies respectively. We note 
that a stationary policy R E C ( S )  can be defined by 
the vector: 7r = (.(U I i ) ;  ( i ,a )  E S x A(i)) ,  where 
R(U I i )  is the probability that the decision maker 
chooses action a E A(i) in state i whenever that state 
is visited. Of course, we have ~ ( a  I 1,) 2 O,a E A(i)  
and 

Hence a deterministic policy R E C ( D )  satisfies 
~ ( a  I i )  E (0 , l )  for all ( i , a )  E S x A(i) ,  and in this 
case R can be regarded as the map defined from S 
to A by: ~ ( i )  = a # 7r(a I i) = 1. For notational 
convenience, 7r E C ( D )  is denoted by f or simply 
f, where f is the mapping defined by f ( i )  = ~ ( i ) .  

A stationary policy R = (RF) induces a finite Mar- 
kov Chain with state space S and the transition ma- 
trix P(no), where for all t > l 

R(U 1 i )  = 1 for all i E S. 

P(7ro)ij = P,(Xt = j I xt-1 = i )  

= Ro(a I i ) P ( j  I i , a ) .  
aEA(i) 

Definition 1.1 A policy R is “ultimatr+y stationary” 
if there exists a stationary poticy (7roo0) called th,e 
“tail” of R, and a random stopping t ime  r called th,e 
“switching time” of 7r, such  that: 1. nt = TO’ f o r  airy 
t 2 T, 2. Px(r < CO) = 1, .where PT is th,e distrihu- 
t ion  in,duced by the policy T .  

Let C ( U S )  be the set of all ultimately stat,ionary poli- 
cies. A simpler subclass of C(US)  is defined by: 
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Definition 1.2 A policy 7r i s  a “simple ult imately 
tieterm,in,istic policy” i f :  1. 7r is ultimately station- 
ary and Markov ,  2. the tail of 7r i s  deterministic,  3. 
th,c switch,ing t i m e  I- is fixed (i.e., nonrandom) .  T h i s  
class of policies urd1 be denoted by G(SUD) 

Let random variable R1 denote t.he immediate reward 
at  time t. Then for any policy n and initial state i ,  
the expectation of Rt is given by 

E,(Rt,i) 
= P,(x~ = j , ~ ,  = Q I X O  = i ) r ( j ,u>.  

j € S  a € A ( j )  

The manner in which the resulting stream of ex- 
pected rewards {E,(Rt, i )  I t = O , 1 , .  . .} is aggregated 
defines the MDP’s discussed in the sequel. 

Discounted MDP’s: For a policy 7r E C and an ini- 
tial state i E S, this overall reward criterion is defined 
by 

t=O 

where ,# E [0, 1) is a fixed discount factor. 
We will denote the process by r(0). This is proba- 

bly the most popular overall payoff criterion for 
WiIDP’s. Not only is it attractive in an economic set- 
ting, but it also avoids the difficulty with the total 
reward criterion (clearly Vp(7r; i) is finite for any 7r). 
We will denote by Vp(n) the vector whose i-th entry 
is Vp(7r; i). Note that discounting assigns more weight 
to early rewards than to later ones. 

Average Reward MDP’s: For a policy T E C and 
an initial state i E S ,  this overall reward criterion is 
defined by 

. T  

We will denote the process by r(A). This “long-run 
average” criterion is also quite popular. The latter is 
iiseful in situations where discounting is not appro- 
priate (e.g., some engineering applications). We note 
that the average reward criterion “ignores” the re- 
wards earned during any finite time period. We will 
denote by v(n) the vector whose i-th entry is V ( n ;  i ) .  
Since S and A(i) for i E S are finite sets and 

min r ( i , a )  5 E,(Rt,j) 5 max r ( i ,a ) ,  (3) 
a E A ( i ) , i € S  a €A( i) , i €  S 

the reward functions of (1) and (2) are bounded. 

Definition 1.3 For r(p),  n policy 7rx is called ’-‘dis- 
coun,t optimal”, if f o r  all i E S ,  

Vp(x*;i) = maxVp(n;i) T E C  = Vi(;), (4) 
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where Vi(i)  is called the i-th entry  of “valu,e vector” 
of r ( p ) ,  and V; is the .ualu.e vector of r(p).  
Definition 1.4 For r ( A ) ,  a policy n* is  called “av- 
erage optimal”, i f  for a16 i E S ,  

V ( n * ;  i )  = maxV(n; i )  = V * ( i ) ,  ( 5 )  
&C 

where V * ( i )  is called the i-th entry  of value vector of 
r ( A ) ,  and P* is the value vector of r ( A ) .  

Weighted Reward Criterion: For a policy n E C 
and an initial state i E S ,  the overall reward criterion 
is defined by 

u(7r;i) =x(1-p)vp(7r;i)+(1-A)V(7r;i), (6) 

where X E [0, 11 is a fixed weight parameter, and p is 
the discount factor in the process r(/3). 

We will denote the process by I’(,#,A). This, and 
related criteria, have been discussed extensively in 
recent literature (Krass [14], Ghosh and Marcus [ll], 
Fernandez-Gaucherand, Ghosh and Marcus [SI, Filar 
and Vrieze [lo], Feinberg and Shwartz [7] and so on). 
We wiIl denote by U(.) the vector whose 1,-th entry 
is U(”; i). 

Definition 1.5 For r(p,A), a policy n* is called 
“weighted optimal”, i f  for all i E S,  

u(n*; i) = maxu(n; 7rEC i ) .  (7 )  

A policy T* is called 6-optimal,  i f  for all i E S ,  

where 6 is a nonnegative constant.  

2. Basic Results for MDP’s 

Since the policies in C can be extremely complicated, 
a central idea in the theory of MDP’s has been to 
localize the search for an optimal policy to (‘simpler” 
subclasses of policies. The following result due to 
Derman and Strauch [6] allows 11s to consider only 
policies in C ( M ) .  

Theorem 2.1 For a n y  policy n E C there exists d E 
C ( M )  such that for  t = 0,1,2,. . ., 
P?,J(Xt = j ,  y2 =a I xo = 1,) = P,(Xt = j ,  yt = 0. I xo = i) 

(9) Vo, E A ( j ) ,  V i , j  E S. 

This implies that for any optimizing criterion based 
on the probabilities in (9), we may restrict ourselves 
to Markov policies. We will use some basic results for 
r(9) and T(A). Most of the results are “classical” and 
can be found in any good reference on MDP’s (e.g. 
Puterman [16], Ross [17], Kallenberg [12], Derman 
[5], Blackwell [3], Mine and Osaki [15], etc.). 
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Theorem 2.2 For  m y  stationmry policy T = (nom) 
E C ( S ) ;  w e  h,ave: 

VdT)  = r(r0) + PP(.iro)Vo(x), (10) 
Vp(.) = [ I N  - aP(no)l-1r(7ro), (11) 

?uh,ere I N  is th,e iden,tity m,atrix of dim,en,sion, N.  
For m y  determin,isticMarkovpolicy T =  ( fo ,  f l ,  . . .) 

(10) braes th,e form, Vp(n) = r ( f 0 )  + PP(fo)V(n(l));  
wh,ere ~ ( 1 )  = ( f1 ,  f 2 ,  ...) is  a determ,inistic Markov  
policy too. 

Theorem 2.3 
pi) Th,e discoun,ted valu,e vector V i  is th,e u,n,ique so- 
lution, to th,e folloiuin,g so-called discounted optimality 
equations (onre f o r  each, i E S )  

(ii) Let a( i )  E A(i)  be such, h a t  f o r  all i E S 

Th,en the deterministic policy x* defined by: n*(i) = 
a( i ) ,  i E S is discou.n,t optim,al. 

Definition 2.1 M D P  r is called ‘%michain” if f o r  
a n y  deterministic policy f E C ( D ) ,  th,e Markov  chain  
induced by P ( f )  has  one ergodic set plus a (perhaps 
e m p t y )  set  of t r m s i e n t  states. 

A set  of states B “com,m,un,icates” i f  f o r  a n y  i ,  j E 
B C S ,  th,ere exists a policy x E C(S) su,ch th,at 
P,(Xt = i I X o  = j )  > 0 f o r  s o m e  t .  M D P  l? 
is called “com,mu,nicatin,g” if th,e state space S com- 
m,un,icates. An, M D P  udh ,  genneral structure is called 
“m,ult.ichain”. 

For any deterministic stationary policy f O0 E C(D) ,  
let . n-1 

Theorem 2.4 Th,ere exists ,O* E (0 , l )  and f* E 
C ( D )  su,ch, th,at:l. f * is discount-optimal policy for 
all E (P*,  1); 2. f * is average optimal policy. 

Proof: See Blackwell [3]. 0 

Theorem 2.5 If r ( A )  is commun,icatin,g o r  un,ichain 
th,en,: (2) v*(i) = v*(j) f o r  all i , j  E S ,  that i s ,  the 
average reward of a n y  optimal policy is independent of 
th,e starting state; CLi) There  exists a n  unichain  policy 
f E C ( D )  such, th,at V ( f ; i )  = 8*(i) f o r  all i E S .  

(ii) By theorem 2.4 there exists an optimal policy 
f E C ( D ) .  The state space of Markov process in- 
duced by f is S I (  f ) U S, ( f ) U . . . U S,(f) ( f ) U T (  f ), 

Proof: (i) See Filar and Schiiltz [9]. 

where Sl(f), S2( f ) ,  . . . , S,O) ( f )  are ergodic classes 
and T ( f )  is the transient class. Now we have two 
cases: 
Case 1 If m,( f )  = 1, the theorem is proved, 
Case 2 If m,(f) > 1, let R ( f )  denote the number of 
elements in the set S2 ( f )  U .  . . U S,(f) ( f )  and consider 
the action set: 

A*(f) = UiCS\Sl(f)UT(f){” E A(i) 
IP(Sl(f) UT(f)li,a) > 0). (15.1 

If A*(f)  = 8, then this is a contradiction with the 
communicating assumption. So define: 

f ( i ) ;  if i E S l ( f ) u T ( f )  
f (9; if i E S\{Sl(f) U W ) )  

if i E S\{Sl(f) U T(f)) 
f l  = { and A(i) n A*(f)  = Q1 (16) 

a; 
and Va E A(i) n A*( f )  # Q) 

The state space of Markov process induced by fi 

is Si(fi) U S2(fi) U . . . U Sm(f l ) ( f i )  U T(fi) ,  where 

all i E Sl(f1) UT( f1 )  we have V ( f 1 ; i )  = V * ( i ) .  We 
can define A*(f1) as in (15) and continue our steps. 
Finally, because of the finiteness of state space and 
action set, we must stop in case 1 after a finite num- 

U 

Models with the scalar value property often occur in 
practice and have received a lot of attention. For the 
weighted MDP, the following results can be found in 
Krass, Filar and Sinha [13] and elsewhere. Note that 
theorem 2.1 implies: S U ~ ~ ( ~ )  w ( n ;  i )  = supc u ( x ;  i ) ,  
for all i E S, so we need only consider Markov poli- 
cies. From Krass [14] we have the following results: 

Theorem 2.6 Consider the weigh,ted process r(p, A), 
w i t h  X > 0. Suppose that the value a*(i) E a* f o r  all 
i~ S,  then: (i)supcw(n;i) =X(I- ,@V;( i )+(I -  
X)v* f o r  all i E S. (ii) G i v e n  a n y  6 > 0 ,  there exists 
n(6) E C ( S U D )  which is &-optimal in r(p,A). (iii) 
L e t  f$ E C ( D )  be optimal in r ( A )  and go* E C ( D )  
be optimal in r(p) and 6 > 0 be given. Th,ere exists 
(non-random) ~ ( 6 )  such  that n(6) = (fo, f l , .  . .), with, 
ft = f$ f o r  t 5 ~(6) and ft = go* f o r  t > ~(6); is 6- 
optimal in I?(/?, A). 

Definition 2.2 For ang 6 > 0 a policy x is an, 6- 
i-optimal policy if w ; ( n )  2 w ~ ( T )  - 6 f o r  all 
i E s. 
Theorem 2.7 Consider the weighted process r(a, A) 
with, A > 0. Let go* E C ( D )  be optimal in, r ( A ) .  
G i v e n  a fixed init ial  state i and arbitrary 6 > 0; th,cre 
exists a positive non-random, r(S) and a policy ~ ( 6 )  = 
(fo,  f i , . .  .) E C(SUD) w i t h  f t  = go* f o r  all t > ~(6) 
such, that ~(6) is 6-i-optimal in r(p, A) .  

Sl(f1) = Sl(f), Wl) 2 W), Wl) < R(f) and for 

ber of steps, then the theorem is proved. 
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Remark 2.1 From Krass [14] we know that the pol- 
icy n(6) which is in theorem 2.6 and theorem 2.7 is a 
Markov policy. Actually from theorem 2.8 we know 
that the policy ~ ( 6 )  is a deterministic Markov policy. 

The idea of theorem 2.7 is the following: in the 
weighted MDP, try to maximize the discounted pay- 
off in the early stages and to maximize the average 
payoff in the later stages. Now we can construct an 
algorithm for the &optimal simple ultimately deter- 
ministic policy (see definition 1.2) in the weighted 
process r(p, A). 

Definition 2.3 Le t  I'(p,Xl,X2) process i s  the  MDP 
with, overall reward cri ter ion defined for  i E S by 

w [ X ~ , X ~ ] ( T ; ~ )  = X i ( 1  -p)Vp(~;i) +X2V(n ; i ) ,  (17) 

where XI, A2 E [0,1], p is the discount  f ac tor  in the 
process r ( p )  and n E C .  N o t e  that  the weighted re- 
ward process is denoted by r(p, A, (1 - x)). 
Theorem 2.8 For  fixed 6 > 0. Choose integer N = 
maxiCS Ni, where Ni is the  smallest  positive integer 
such, that  PN+lX1( l  - p)V,( i )  5 6 .  Le t  f *  be a n  
average-optimal determinis t ic  policy. S e t  f = f *. 
For k = N d o w n  to  0, 

For each, i E S ,  select ai that  achieves 
maXa,A(i){T(i,a)(l- P ) V k +  
CjP(jl i ,a)4pk++lX1, X21(f ;d> .  
Le t  f k  be the non-randomized decision rule 
taking ac t ion  a; in state  i. 
S e t  f = ( f k ,  f )  again, decrement  k,  and 
repeat. 

N o w  f = (f', f1  ,..., f N , f * ,  f*, ...) constructed 
above i s  a n  6-opt imal  policy in r (p ,  Xl,X2). 

Theorem 2.9 There exis t  p* E (0,l)  and f * E C ( D )  
such  that: for all p E [/?*,l) and X E [0,1], f *  i s  
weighted-optimal policy. 

Proofi By theorem 2.4, there exist p* E (0,l)  and 
f *  E G ( D )  such that: (1) f *  is discount-optimal for 
all p e [p*, 1); and (2) f * is an average-optimal pol- 
icy. So for all X E [0, l] and ,B E [p*, l), we have 

X(l-P)Vp(f*;i) =supX( l -P )Vp(n ; i ) ; iES  (18) 
C 

( l - -A)V( f* ; i )  =Sup(l-X)P(w;i) ; iES.  (19) 
C 

Substitute (18) and (19) into (17), for all i E S we 
have 

4f *; 

= 
= X(l-,l3)Vp(f";i)+ (1-X)V(f*;i) 

maxX(1- P)Vp(n;i) + max(1- X ) V ( r ; i )  
T-EC X E C  

2 maxw(7r;i) T € C  2 w(f*;i). ( 20) 

Therefore, w( f *; i) = max,Ec w(n; i). 0 

3. MDP Perturbation Theory 

Consider the MDP r and let P ( f )  be the one step 
transition probability matrix under the control of sta- 
tionary policy f E C ( D ) .  When we consider the situ- 
ation where the transition probabilities of r are per- 
turbed slightly, there are now many results. For a 
recent survey of some of these we refer the reader to 
Abbad and Filar [2]. 

Singular Perturbation 

Definition 3.1 A se t  D is called the disturbance law 
if: D = { d ( j  I i , a )  I i , j  E S, a E A ( i ) } ,  and the 
elements  of D sat is fy:  (i) xjfs d ( j  I i, a )  = 0 for all 
i E S, a E A(i ) ,  and ,  (ai) there exists EO > 0 such, 
tha t  for all E E [O,EO], i E S ,  and a E A(;),  

p ( j  I i, a )  + Ed( j  1 i, U) 2 0. (21) 

Note that D is more general than the perturbation 
permitted by Delebecque [4] where it is assumed that 
d ( j  I i , a )  2 0 whenever j # i. 

Now we have a family of perturbed MDP Pc for all 
E E [ O , E ~ ]  that differ from the original MDP r only 
in the transition law, namely, in I?, we have that for 
all i , j  E S and a E A ( i ) ,  p ( j  I ; , a ) ( € )  = p( j  I i , a )  + 
~ d ( j  I ;,a). Let P(E)  denote the one step transition 
probability matrix P + ED,  and for the model I'c let 
P ( f , E )  = P(f) + ED( f ) ;  P ( T o , E )  = P(.o) + ~ D ( n o ) ,  
where D ( f )  and D ( T ~ )  are disturbance matrix cor- 
responding to the policies f E C ( D )  and TO E C ( S )  
respectively. 

Definition 3.2 For n E C and i E S discounted 
cri ter ion v~(T; i ) ( ~ )  and average cri ter ion V ( n ;  i ) ( ~ )  
are dejined in the s a m e  w a y  as  Vp(~;i) and V(r;i)  
were defined in r(p) and r ( A )  w i t h  one  s tep tran-  
s i t ion  probability P(n ,  E )  respectively. Let  V ~ ( T ,  E )  

and  ~ ( T , E )  denote  th,e vector f o r m s  of Vp(q i ) ( c )  and 
V(n,  E )  respectively. 

Let re(@ and r , ( A )  be defined in the same way 
as r ( p )  and r ( A )  respectively and V i ( € )  = max,Ec 
V ~ ( T , E ) ;  I/*(€) = maxTcc V(T,E) .  For every pol- 
icy n E C, we define Vp(r)(O) = lim,+oVp(T)(c); 
v(7r)(O) = liminf,,o V ( ~ ) ( E ) .  The following three 
results follow from Abbad and Filar [2]. 

Theorem 3.1 There  exis ts  a determinis t ic  policy f E  
C(D)  and a positive number  €1 such, that  for an,y E E 
[ O , E ~ ) ,  f is a m a x i m i z e r  in re(@. 
Lemma 3.1 For  a n y  s tat ionary policy T E C ( S ) ,  
there exis ts  a "lamit s tat ionary ma t r i z " :  P;(T) = 
lim,,oP:(7r), whxre P;(T) i s  defined by (14) with, 
P( T ,  e ) .  
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Theorem 3.2 Th,ere erists g, determ,in,ist.ic policy f E  
C ( D )  and o, positive n,um.ber 62,  such, th,at for  anq 
f E ( O , F ~ ) ,  f is n, m,arim,irer in, I’<(A). Moreower, f 
is n m,axim:izer in, rO(A). 

Remark  3.1 Theorems 3.1 and 3.2 can be extended 
to the case where the perturbation is of the form 
P + D(F) where all elements of the disturbance law 
D(6) are rational functions of E (see Abbad [l]). 

General Per turba t ion  

For general perturbation, we have the transition prob- 
abilities as follows for i , j  E S;  a E A(i) 

p ( j  I i ,  a ) ( d )  = p ( j l i ,  a,) + d ( j l i ,  a,), (22) 

where the modulus llDll = d = max{ld(jli,a)l la E 
A(i); i , j  E S }  of disturbance law D is small enough 
(11D11 = d < 60) so that (22) is a transition probabil- 
ity, that is , for any a E A(i) and i , j  E S ,  p ( j l i , a ) ( d )  
2 O and C j E s p ( j l i , a ) ( d )  = 1. 

It is known that in general P*(r ,d)  may not have a 
limit when d tends to 0. For the general disturbance 
law, Ahbad [l] derives the following results. 

Theorem 3.3 Let r E C ( S )  be an,y m.nximizer in  the 
I?@). Th,en for all 6 > 0, th,ere exists ~ ( p )  > 0 such 
that for all disturbance law D satisfying d < E ( @ ,  

IlVP(.,d) - vp*(d)II < 6. 

Lemma 3.2 For th,e r ( A )  we h,nve (2) Let r E C ( S )  
be u.nichain, then we have limd--+o P*(r ,d)  = P*(r) ;  
(ti) Let r = (fo,  f l , . .  . , fT, f ,...) E C(SUD) where 
fT = f ,  r < 00 and f is unichain, then we have 
limd,oP*(r,d) = P * ( r )  = P * ( f ) .  

Theorem 3.4 (a) Assume that r ( A )  i s  unichain. Let 
r E C ( S )  be any  maximizer in  the r ( A ) .  Then for all 
6 > 0, there exists ~ ( 6 )  > 0 such that for all distur- 
bance law D satisfying d < ~ ( 6 ) ~  I lV(r ,d)  - V*(d)l l  5 
6. 

(ii) Assume that r ( A )  i s  communicating. Let r E 
C ( S )  be any  maxim,izer unich,ain policy in the r ( A ) .  
Th,en for all 6 > 0 ,  there exists E ( & )  > 0 such that for 
all disturbance law D satisfying d < E ( & ) ,  I l V ( r , d )  - 
V*(d)Il 5 6. 

4. P e r t u r b e d  Weighted Criterion 

Now we will consider the cases with the disturbance 
law D ( E )  which is mentioned in remark 3.1. 

Consider the weighted reward MDP(WMDP for 
short) r(j3, A) with perturbation, denoted by I’€(/3, A), 
which is defined by: A) = (S ,  A,p,, r, w ) ,  where 
the perturbed transition law, p,, is defined by p E  = 
{ p ( j l i , a ) ( c )  : ( i , a , , j )  E S x A ( i ) x S } , a n d w ( ~ )  isgiven 

in (6) with p E  and p ( j l i , a ) ( t )  given in (21). Thus for 
any policy 7r E C ,  we have for all i E S: 

w ( r ;  i)(f) 
zz A ( l  -P)Vp(r;i)(~)+ (1- A)V( r ; i ) ( f ) ;  (23) 

and ~ ~ * ( ~ ) ( E ) = s u P , ~ ~ w ( ~ ; ~ ) ( F ) ,  ~ E S .  For every pol- 
icy r E C ,  we have w(7r; i ) ( O )  = liminf,+o w(7r; + ) ( E ) ,  

i E s. 
Definition 4.1 The optimization problem: 

W * ( i ) ( O )  = sup u(r;i)(O), i E s (24) 
T E C  

i s  called the “Limit Weighted Reward MDP” 
(LWMDP for short). 

5. The Propert ies  of L W M D P  

In this section we shall attempt to develop the the- 
ory for the limit weighted reward MDP’s ro(p, A) in- 
troduced in section 4 and for the asymptotics of the 
rc(p,A) as E -+ 0. Our approach is along the lines 
of the “classical” development for the discounted and 
average MDP’s and their perturbed models. For any 
E E [ O , E O )  it is easy to find the upper bound of our 
model: 

f € C ( D )  7rEC(S) T€C 
sup W ( f ; i ) ( E )  5 sup W ( r ; i ) ( E )  5 s u p W ( 7 r , i ) ( E )  

5 A ( 1 -  P)Vi(i)(E) + (1 - A)V*( i ) (e) .  (25) 

Remark 5.1 By theorem 2.1 for all i E S and E E 
[ O , E O )  we have: ~ ( r ;  i ) ( c )  = supc ~ ( r ;  i)(~), 
where EO is defined by definition 3.1. So we need only 
consider Markov policies. From now on, C ( M )  will 
be the largest class of policies under consideration in 
this chapter. 

Lemma 5.1 Let I’(p,A) be communicating or uni- 
chain, then there exists €3 > 0 such that for E E [0, € 3 )  

rC(j3, A) i s  communicating or unichain as well. 
Proof: Let us investigate the d( j l i , u ) ( c )  i , j  E S ,  

a E A(i ) .  Because of our assumption in this chap- 
ter (remark 3.1) and the finiteness of the state space 
and the action set, we have finite number of rational 
functions of E .  Let €3 = min{co,mini,j,,{E(i,j,a) > 
O l c ( i , j ,  U )  is the smallest nonegative real root of func- 
tion d ( j l i , u ) ( ~ )  = 0)). By the definition of distur- 
bance law and the communicating or unichain prop- 

0 

Theorem 5.1 Consider the process r€(p,A), with, X 
> 0. Suppose r(p, A) i s  communicating or unich,ain. 
Then there exists €4 > 0 such that f o r  t E ( O , F ~ )  
we have: (i) For all i E S:  s u p c u ( r ; i ) ( ~ )  = A ( l  - 
,B)VZ(i)(c) +(1 - A ) V * ( i ) ( c ) ;  (ii) Given any  6 > 0 ,  
there exists r ( 6 )  E C(SUD) wh,ich is 6-optimal in, 

erties, the rest of the proof is trivial. 
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rC(B,A);  (viz) L e t  6 > 0 and f* E C ( D )  be opt imal  
in, r , ( A )  and g* E C ( D )  be opt imal  in I?€(@), where 
f E ( 0 , ~ ) .  There  exists a n o n - r a n d o m  r(6 ,A , i !? ,~4)  
such, that  7r* = ( f ~ , f l , .  . .) wzth f t  = g* for t < 
7 ( 6 , A , P , E 4 )  and f t  = f *  for  t 2 7 ( 6 , A , P , E 4 )  , is 
S-opt imal  in r,(p,A) for all E E (@e4);  where e4 = 
min{ € 0 )  € 1 ,  € 2 ,  €3). Moreover,  (i), (ii) and ($ii) hold 
also for the  LWMDP Yo(& A). 

Proof: Without loss of generality assume that r( i ,  U )  

2 0 for all i E S and a E A(i). We first prove (i) and 
(ii). For a fixed 6 > 0 and E E [ O , E ~ ) ,  by theorem 3.1, 
there exists a deterministic policy f (/3) E C(D) and 
a positive integer ~ ( 6 ,  A, P, el) such that for all T 2 
r(6, A, P, €1) we have for all i E S 

V ; ( w  = Vp(f(P);i)(4 
7 

t=o t=7+1 

By lemma 5.1, theorem 2.5 and theorem 3.2 for 
any E E (O,min(~z,~3}), there exists a deterministic 
policy f ( A )  E C ( D )  such that for all i , j  E S: 

V * ( ~ ) ( E )  = P*(~) (E)  = V(f(A);i)(E) 
= v'(f(4; j ) ( d  = V f  (A)).  (27) 

Hence f (A)  is also a maximizer in the process r'o(A). 
Define a policy 7r = (fo,  f l , .  . .) E C ( S U D )  in the 

following way: 

(28) 
f (PI if t I T ( 6 ,  A, P, E 1  1; 

f t  = { f ( A )  if t > T ( S , A , P , E ~ ) .  

Then when E E [O,min{q,~2,~g)) ,  we have X ( l  - 
P)Vp(n; i ) ( ~ )  > A ( 1 -  @)Vp*(i)(~) - 6 for every i E S. 
Note that by the communicating or unichain assump- 
tion and lemma 5.1, we have: w ( n ; i ) ( ~ )  > A ( l  - 
P ) V Z ( i ) ( c )  + ( 1  - A ) v * ( i ) ( ~ )  - 6 ,  for all i E S and 
E E [ O , E q )  where €4 = min{EO,E1,E2,E3). By (25) the 
proofs of (i) and (ii) are completed. By (i), (ii) and 
the proof of theorem 2.6 (see Krass [14]) (iii) is trivial. 

0 

Corollary 5.1 Le t  I',(p,A) be un icha in  or c o m m u -  
wicating, t h e n  th,e theorem 5.1 remains  valid. 

Proof: Because r,-,(p,A) is unichain or communi- 
cating, we have that (27) holds for E = 0. By theorem 
3.1 and theorem 3.2, theorem 5.1 is again valid. This 
proves the corollary. 0 

Remark 5.2 Corollary 5.1 is more general than the- 
orem 5.1, but the conditions of theorem 5.1 are easy 
to check. 

Without the communicating or unichain assump- 
tions, we have : 

Corollary 5.2 Suppose that  th,ere is a policy ?T E 
C ( S )  such  that  v(7r;i) = V*( i )  = 71 for a61 1, E s, 
t h e n  the results (a) ,  (ii) and (iii) of th,eorem 5.1 still 
aPPb 

Proof: Investigate the proof of theorem 5.1 and 
note that we only need to establish (27). By the as- 
sumption of corollary, (27) is true. Hence, we can 
define 7rt similarly to (28)  for every t and then n = 
(TO, T I , .  . .) is an &optimal policy. The proof is com- 
pleted. 0 

When we relax the "scalar value" hypothesis on 
I?(@, A) or on ro(p, A), more difficulties arise. If we 
want to obtain similar results as in Krass [14] (the 
case without perturbation), we have to prove that 
theorem 2.7 is true uniformly for E E [O, E " ) .  

Theorem 5.2 FOT the r,(p,A) with A > 0 and E E 
[ O , E ~ ) .  Le t  f *  E C ( D )  be opt imal  in th,eorem 3.2. 
G i v e n  a fixed ini t ial  state i and a n  arbitrary 6 > 0, 
there exists a n  €4 > 0 (see theorem 5.1) and a pos- 
i t ive  non- random ~ ( 6 , A , j 3 , ~ 4 )  su,ch that  for a n y  E E 
[ O , E ~ )  there exis ts  a policy T ( F )  = ( T O ( E ) , T ~ ( E ) ,  . . .) E 
C(SUD) wi th  T ~ ( E )  = f *  for all t 2 T ( S , X , ~ , E ~ )  
wh ich  i s  6- i -opt imal  in A). 

Pro05 Without loss of generality we assume that 
r( i ,u)  2 0 for all a E A ( i )  and i E S. When /3 = 0, 
the result is trivial for the case of l?,(A) by the- 
orem 3.2. Hence we consider the case of /3 > 0. 
For the fixed 6 > 0 and E E [ O , E ~ ) ,  by remark 5.1, 
there exists a Markov policy + ( E )  = ( + o ( E ) , + ~ ( E ) , .  . .) 
which is $-i-optimal in r',(P,A). i l s  in (26), there 
exists T ( ~ , A , , B , E ~ )  such that for all E E [ O , E ~ )  and 
r 2 ~ ( 6 ,  A, P, € 4 )  we have 

uniformly for the E E [ O , E ~ )  and for the fixed i E S. 
Now for each ? ( E )  we define T ( E )  = ( 7 r 0 ( ~ ) , 7 r 1 ( ~ ) ,  ...) 
E C(SUD) with 7rt(E) = ? t ( ~ )  for t = 0 ,1 , .  . . ,T(S,A, 
P , E ~ )  - 1 and T ~ ( E )  = f* for t 2 T ( ~ , A , P , E ~ ) .  Then 
similafly to the proof of theorem 2.7 (see Krass [14]), 
we obtain that for the fixed i E S and all E E [O,c l )  

0 

Definition 5.1 For a n y  integer r and a determinis-  
t i c  policy f E C ( D ) ,  we  de$ne: 

u ( 7 r ( E ) ;  i ) ( E )  2 W();T(E); i ) ( E )  - 4 2 supc u(7r; i ) ( E )  - 6. 
This completes the proof of this theorem. 

C(7, f )  = 

( ~ = ( ~ 0 , 7 r i ,  ...) E C ( ~ ) 1 7 r t = f ,  t r r } .  (30) 

T h e  distance between two  policies 7r ,7r*  E C(T,  f )  

dis(n,n*) = max 17rt(a.li) - n*(uli)I. (31) 

is defined 

i E S  
o E A( i j  

t = o , .  . , T - . I  
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Lemma 5.2 Th,e class C(r,  f )  is closed. 
Prooj Since the state, action spaces and r are all 

0 finite, the proof is trivial. 

Lemma 5.3 For an,y in,teger r and 0, determ!in,istic 
policy f E C(D), we have 

(i) For all 7r E C(r,  f ) ,  

w(7r; i ) ( O )  = l & w ( ~ ;  i ) ( ~ )  = lim w ( ~ ;  i ) ( ~ ) .  (32) c+o €+O 

(22) If A + A*, where A,T* E C ( r , f ) ,  t h e n  the  
twofold limit in (%’), below, exis ts  and we have: 

lim W ( K ;  i ) ( ~ )  = lim u(7r; i ) ( O )  

= lim w(7r*; i ) ( ~ )  = w(7r*; i ) ( O ) .  

r - r n  ,+,* 
I( -+ I(* 

€-+O (33) 

Proof: (i) 

w(7r; i)(€) 
= X(1- @)Vp(7r;i)(E) + (1 - A)V(r ; i ) ( e )  
= X(1- @)I(€) + (1 - X)II(€). (34) 

Because 7r E C(T, f), we have 

-- 
k = r  L”ES aEA(i ’ )  j € S  c+o T+m 

P,(XI, = i ” , Y k  = alX, = j ,x, = i)(e) x 
P,(X, = jlX0 = i)(c)r(i’,a)] 

TT-1 

rT-r 1 

where f is given in the lemma. Because of the finite- 
ness of state space, action set and T ,  we have 

- 
lim I(€) = limI(6) = Vs(7r; i ) ( O ) .  

€40 - 
€ - i o  

(35) 

Similarly to the proof of Theorem 3.6.1 in Krass [14] 
and with the notation of (34), we have 

- lim I I ( E )  
€40 

= - lim V ( T ;  i ) ( c )  
c-+o 

k=O J 

. T-1 

Because f E C(D) and for any J’ E S, we have 

. T--7 

. T--T 
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Hence, (36) is 

l&lII(€) = I&lCP,(XT = jlX0 = i)(€) x 
E+O E+O . 

3- 

[P*(f) ( 6 ) 7 0 ) 1  ( j ) .  (39) 

By lemma 3.1, continuity of rational functions of 
E (see remark 3.1) and finiteness of S and A(i )  for 
i E S ,  (39) is 

- liin I I (6)  
E + O  

= lim p,(xT = jlxo = i ) ( ~ )  [ ~ * ( f ) ( ~ ) ~ ( f ) l  ( j )  

= v(T; i ) ( O ) .  (40) 

E+O 
j € S  

Combine (35 )  and (40) and (32) is proved. 
(ii) Since the product of finitly many continuous func- 
tions is a continuous function, the finiteness of r ,  S 
and A(i) for i E S, similarly to the proof of (i), yields 

Theorem 5.3 Consider  the l?,(p,X) with  X > 0. Le t  
f* E C ( D )  satisfy theorem 3.2. G i v e n  a fixed state 
and arbitrary 6 > 0, there exists E* > 0, a pos- 
i t ive non- random T ( S , X , P , E * )  and a policy ~ ( 6 )  = 
( f o , f l ,  ...) E C ( S U D )  wi th  fi = f *  f o r  all t 2 
~ ( 6 ,  A, P, E * )  such  that ~ ( 6 )  is 6- i -opt imal  in I?@> A) 
for all E E [O, E * ) .  

Proof: Again we may assume that ~ ( i ,  a )  2 0 for all 
a. E A(i) and i E S. By theorem 5.2, for E = 0 we take 
~ ( 6 )  to be an $-&optimal policy for LWh4DP with 
switching time 7 and f *  E C(D) .  Now assume that 
the statement of the theorem is wrong. Then there 
exists a sequence { E ~ } : = ~ ,  E,, > 0 such that (i) E ,  + 
0; (ii) w(n(S ) ; i>(e , )  < w*( i ) ( en )  - 6. However by 
theorem 5.2, there exists an integer M such that when 
n 2 M ,  there exists a policy rn E C ( T , ~ * )  which is 
$-i-optimal, that is I L J ( T ~ ; ~ ) ( E , )  - w*(i)(En)l  2 $; or 

By the finiteness of T ,  S and A(i) for i E S,  there 
exists a subsequence n k  of n such that irn& + T-.  

Without loss of generality we assume that t.he subse- 
quence is the sequence {n}. By lemma 5.3, 

w(T*;  i ) ( O )  = lim U ( T ;  i ) ( ~ )  = lim w(T."; i ) ( c n )  

(ii) . 0 

U ( 7 P ; i ) ( E n )  2 U * ( i ) ( E , )  - $ 

L + O  n+w 
7r -? 7 r 4  

6 2 lim w*( i ) ( en )  - - 
n+w 2 

6 
lim w ( T ( ~ ) ;  i ) ( E n )  + 6 - - 
)?+cc 2 2 

6 = u ( ~ ( d ) ; i ) ( O )  + 5 > w*( i ) (O) .  (41) 

This is a contradiction to definition of w*( i ) (O).  0 
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