2,926 research outputs found

    Axiomatization of an Exponential Similarity Function

    Get PDF
    An agent is asked to assess a real-valued variable y based on certain characteristics x=(x^{1},...,x^{m}), and on a database consisting of n observations of (x^{1},...,x^{m},y). A possible approach to combine past observations of x and y with the current values of x to generate an assessment of y is similarity-weighted averaging. It suggests that the predicted value of y, y_{n+1}^{s}, be the weighted average of all previously observed values y_{i}, where the weight of y_{i} is the similarity between the vector x_{n+1}^{1},...,x_{n+1}^{m}, associated with y_{n+1}, and the previously observed vector, x_{i}^{1},...,x_{i}^{m}. This paper axiomatizes, in terms of the prediction y_{n+1}, a similarity function that is a (decreasing) exponential in a norm of the difference between the two vectors compared.Similarity, exponential

    Weighted power counting and chiral dimensional regularization

    Full text link
    We define a modified dimensional-regularization technique that overcomes several difficulties of the ordinary technique, and is specially designed to work efficiently in chiral and parity violating quantum field theories, in arbitrary dimensions greater than 2. When the dimension of spacetime is continued to complex values, spinors, vectors and tensors keep the components they have in the physical dimension, therefore the γ\gamma matrices are the standard ones. Propagators are regularized with the help of evanescent higher-derivative kinetic terms, which are of the Majorana type in the case of chiral fermions. If the new terms are organized in a clever way, weighted power counting provides an efficient control on the renormalization of the theory, and allows us to show that the resulting chiral dimensional regularization is consistent to all orders. The new technique considerably simplifies the proofs of properties that hold to all orders, and makes them suitable to be generalized to wider classes of models. Typical examples are the renormalizability of chiral gauge theories and the Adler-Bardeen theorem. The difficulty of explicit computations, on the other hand, may increase.Comment: 41 pages; v2: minor changes, PRD versio

    Inducing Compact but Accurate Tree-Substitution Grammars

    Get PDF
    Tree substitution grammars (TSGs) are a compelling alternative to context-free grammars for modelling syntax. However, many popular techniques for estimating weighted TSGs (under the moniker of Data Oriented Parsing) suffer from the problems of inconsistency and over-fitting. We present a theoretically principled model which solves these problems using a Bayesian non-parametric formulation. Our model learns compact and simple grammars, uncovering latent linguistic structures (e.g., verb subcategorisation), and in doing so far out-performs a standard PCFG.

    Computation of distances for regular and context-free probabilistic languages

    Get PDF
    Several mathematical distances between probabilistic languages have been investigated in the literature, motivated by applications in language modeling, computational biology, syntactic pattern matching and machine learning. In most cases, only pairs of probabilistic regular languages were considered. In this paper we extend the previous results to pairs of languages generated by a probabilistic context-free grammar and a probabilistic finite automaton.PostprintPeer reviewe

    GMM with Many Moment Conditions

    Get PDF
    This paper provides a first order asymptotic theory for generalized method of moments (GMM) estimators when the number of moment conditions is allowed to increase with the sample size and the moment conditions may be weak. Examples in which these asymptotics are relevant include instrumental variable (IV) estimation with many (possibly weak or uninformed) instruments and some panel data models covering moderate time spans and with correspondingly large numbers of instruments. Under certain regularity conditions, the GMM estimators are shown to converge in probability but not necessarily to the true parameter, and conditions for consistent GMM estimation are given. A general framework for the GMM limit distribution theory is developed based on epiconvergence methods. Some illustrations are provided, including consistent GMM estimation of a panel model with time varying individual effects, consistent LIML estimation as a continuously updated GMM estimator, and consistent IV structural estimation using large numbers of weak or irrelevant instruments. Some simulations are reported.Epiconvergence, GMM, Irrelevant instruments, IV, Large numbers of instruments, LIML estimation, Panel models, Pseudo true value, Signal, Signal Variability, Weak instrumentation

    Uniform Asymptotic Normality in Stationary and Unit Root Autoregression

    Get PDF
    While differencing transformations can eliminate nonstationarity, they typically reduce signal strength and correspondingly reduce rates of convergence in unit root autoregressions. The present paper shows that aggregating moment conditions that are formulated in differences provides an orderly mechanism for preserving information and signal strength in autoregressions with some very desirable properties. In first order autoregression, a partially aggregated estimator based on moment conditions in differences is shown to have a limiting normal distribution which holds uniformly in the autoregressive coefficient rho including stationary and unit root cases. The rate of convergence is root of n when |rho|Aggregating information, Asymptotic normality, Bias Reduction, Differencing, Efficiency, Full aggregation, Maximum likelihood estimation

    Semiparametric Estimation in Time Series of Simultaneous Equations

    Get PDF
    A system of vector semiparametric nonlinear time series models is studied with possible dependence structures and nonstationarities in the parametric and nonparametric components. The parametric regressors may be endogenous while the nonparametric regressors are strictly exogenous and represent trends. The parametric regressors may be stationary or nonstationary and the nonparametric regressors are nonstationary time series. This framework allows for the nonparametric treatment of stochastic trends and subsumes many practical cases. Semiparametric least squares (SLS) estimation is considered and its asymptotic properties are derived. Due to endogeneity in the parametric regressors, SLS is generally inconsistent for the parametric component and a semiparametric instrumental variable least squares (SIVLS) method is proposed instead. Under certain regularity conditions, the SIVLS estimator of the parametric component is shown to be consistent with a limiting normal distribution that is amenable to inference. The rate of convergence in the parametric component is the usual /n rate and is explained by the fact that the common (nonlinear) trend in the system is eliminated nonparametrically by stochastic detrending.Simultaneous equation, Stochastic detrending, Vector semiparametric regression
    corecore