3,017 research outputs found

    On the Hardness of Partially Dynamic Graph Problems and Connections to Diameter

    Get PDF
    Conditional lower bounds for dynamic graph problems has received a great deal of attention in recent years. While many results are now known for the fully-dynamic case and such bounds often imply worst-case bounds for the partially dynamic setting, it seems much more difficult to prove amortized bounds for incremental and decremental algorithms. In this paper we consider partially dynamic versions of three classic problems in graph theory. Based on popular conjectures we show that: -- No algorithm with amortized update time O(n1−ε)O(n^{1-\varepsilon}) exists for incremental or decremental maximum cardinality bipartite matching. This significantly improves on the O(m1/2−ε)O(m^{1/2-\varepsilon}) bound for sparse graphs of Henzinger et al. [STOC'15] and O(n1/3−ε)O(n^{1/3-\varepsilon}) bound of Kopelowitz, Pettie and Porat. Our linear bound also appears more natural. In addition, the result we present separates the node-addition model from the edge insertion model, as an algorithm with total update time O(mn)O(m\sqrt{n}) exists for the former by Bosek et al. [FOCS'14]. -- No algorithm with amortized update time O(m1−ε)O(m^{1-\varepsilon}) exists for incremental or decremental maximum flow in directed and weighted sparse graphs. No such lower bound was known for partially dynamic maximum flow previously. Furthermore no algorithm with amortized update time O(n1−ε)O(n^{1-\varepsilon}) exists for directed and unweighted graphs or undirected and weighted graphs. -- No algorithm with amortized update time O(n1/2−ε)O(n^{1/2 - \varepsilon}) exists for incremental or decremental (4/3−ε′)(4/3-\varepsilon')-approximating the diameter of an unweighted graph. We also show a slightly stronger bound if node additions are allowed. [...]Comment: To appear at ICALP'16. Abstract truncated to fit arXiv limit

    Algorithmic Applications of Baur-Strassen's Theorem: Shortest Cycles, Diameter and Matchings

    Full text link
    Consider a directed or an undirected graph with integral edge weights from the set [-W, W], that does not contain negative weight cycles. In this paper, we introduce a general framework for solving problems on such graphs using matrix multiplication. The framework is based on the usage of Baur-Strassen's theorem and of Strojohann's determinant algorithm. It allows us to give new and simple solutions to the following problems: * Finding Shortest Cycles -- We give a simple \tilde{O}(Wn^{\omega}) time algorithm for finding shortest cycles in undirected and directed graphs. For directed graphs (and undirected graphs with non-negative weights) this matches the time bounds obtained in 2011 by Roditty and Vassilevska-Williams. On the other hand, no algorithm working in \tilde{O}(Wn^{\omega}) time was previously known for undirected graphs with negative weights. Furthermore our algorithm for a given directed or undirected graph detects whether it contains a negative weight cycle within the same running time. * Computing Diameter and Radius -- We give a simple \tilde{O}(Wn^{\omega}) time algorithm for computing a diameter and radius of an undirected or directed graphs. To the best of our knowledge no algorithm with this running time was known for undirected graphs with negative weights. * Finding Minimum Weight Perfect Matchings -- We present an \tilde{O}(Wn^{\omega}) time algorithm for finding minimum weight perfect matchings in undirected graphs. This resolves an open problem posted by Sankowski in 2006, who presented such an algorithm but only in the case of bipartite graphs. In order to solve minimum weight perfect matching problem we develop a novel combinatorial interpretation of the dual solution which sheds new light on this problem. Such a combinatorial interpretation was not know previously, and is of independent interest.Comment: To appear in FOCS 201

    Symmetric Determinantal Representation of Formulas and Weakly Skew Circuits

    Get PDF
    We deploy algebraic complexity theoretic techniques for constructing symmetric determinantal representations of for00504925mulas and weakly skew circuits. Our representations produce matrices of much smaller dimensions than those given in the convex geometry literature when applied to polynomials having a concise representation (as a sum of monomials, or more generally as an arithmetic formula or a weakly skew circuit). These representations are valid in any field of characteristic different from 2. In characteristic 2 we are led to an almost complete solution to a question of B\"urgisser on the VNP-completeness of the partial permanent. In particular, we show that the partial permanent cannot be VNP-complete in a finite field of characteristic 2 unless the polynomial hierarchy collapses.Comment: To appear in the AMS Contemporary Mathematics volume on Randomization, Relaxation, and Complexity in Polynomial Equation Solving, edited by Gurvits, Pebay, Rojas and Thompso
    • …
    corecore