1,053 research outputs found

    Optimized Coefficients of Interpolation Filter To Adapt Statistical Property of Each Image

    Get PDF
    Spatial transform has assumed an essential part in most picture and video coding routines. Wavelet change has numerous points of interest, for example, multi-determination representation, great vitality compaction and de-correlation. We propose another weighted versatile lifting (WAL)- based wavelet change that is intended to take care of the issues existing in the past versatile directional lifting (ADL) approach. The proposed methodology utilizes the weighted capacity to ensure that the prediction and update stages are predictable, the directional addition to enhance the introduction property of added image, and adaptive interpolation filter to adjust to statistical property of each image

    Multi-view image coding with wavelet lifting and in-band disparity compensation

    Get PDF

    In-Band Disparity Compensation for Multiview Image Compression and View Synthesis

    Get PDF

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    Finding faint HI structure in and around galaxies: scraping the barrel

    Get PDF
    Soon to be operational HI survey instruments such as APERTIF and ASKAP will produce large datasets. These surveys will provide information about the HI in and around hundreds of galaxies with a typical signal-to-noise ratio of \sim 10 in the inner regions and \sim 1 in the outer regions. In addition, such surveys will make it possible to probe faint HI structures, typically located in the vicinity of galaxies, such as extra-planar-gas, tails and filaments. These structures are crucial for understanding galaxy evolution, particularly when they are studied in relation to the local environment. Our aim is to find optimized kernels for the discovery of faint and morphologically complex HI structures. Therefore, using HI data from a variety of galaxies, we explore state-of-the-art filtering algorithms. We show that the intensity-driven gradient filter, due to its adaptive characteristics, is the optimal choice. In fact, this filter requires only minimal tuning of the input parameters to enhance the signal-to-noise ratio of faint components. In addition, it does not degrade the resolution of the high signal-to-noise component of a source. The filtering process must be fast and be embedded in an interactive visualization tool in order to support fast inspection of a large number of sources. To achieve such interactive exploration, we implemented a multi-core CPU (OpenMP) and a GPU (OpenGL) version of this filter in a 3D visualization environment (SlicerAstro\tt{SlicerAstro}).Comment: 17 pages, 9 figures, 4 tables. Astronomy and Computing, accepte

    Directional Transforms for Video Coding Based on Lifting on Graphs

    Get PDF
    In this work we describe and optimize a general scheme based on lifting transforms on graphs for video coding. A graph is constructed to represent the video signal. Each pixel becomes a node in the graph and links between nodes represent similarity between them. Therefore, spatial neighbors and temporal motion-related pixels can be linked, while nonsimilar pixels (e.g., pixels across an edge) may not be. Then, a lifting-based transform, in which filterin operations are performed using linked nodes, is applied to this graph, leading to a 3-dimensional (spatio-temporal) directional transform which can be viewed as an extension of wavelet transforms for video. The design of the proposed scheme requires four main steps: (i) graph construction, (ii) graph splitting, (iii) filte design, and (iv) extension of the transform to different levels of decomposition. We focus on the optimization of these steps in order to obtain an effective transform for video coding. Furthermore, based on this scheme, we propose a coefficien reordering method and an entropy coder leading to a complete video encoder that achieves better coding performance than a motion compensated temporal filterin wavelet-based encoder and a simple encoder derived from H.264/AVC that makes use of similar tools as our proposed encoder (reference software JM15.1 configu ed to use 1 reference frame, no subpixel motion estimation, 16 × 16 inter and 4 × 4 intra modes).This work was supported in part by NSF under grant CCF-1018977 and by Spanish Ministry of Economy and Competitiveness under grants TEC2014-53390-P and TEC2014-52289-R.Publicad

    Adaptive lifting schemes with a global L1 minimization technique for image coding

    Get PDF
    International audienceMany existing works related to lossy-to-lossless image compression are based on the lifting concept. In this paper, we present a sparse op- timization technique based on recent convex algorithms and applied to the prediction filters of a two-dimensional non separable lifting structure. The idea consists of designing these filters, at each resolution level, by minimizing the sum of the ℓ1-norm of the three detail subbands. Extending this optimization method in order to perform a global minimization over all resolution levels leads to a new opti- mization criterion taking into account linear dependencies between the generated coefficients. Simulations carried out on still images show the benefits which can be drawn from the proposed optimization techniques
    corecore