171 research outputs found

    Critical Noise Levels for LDPC decoding

    Get PDF
    We determine the critical noise level for decoding low density parity check error correcting codes based on the magnetization enumerator (\cM), rather than on the weight enumerator (\cW) employed in the information theory literature. The interpretation of our method is appealingly simple, and the relation between the different decoding schemes such as typical pairs decoding, MAP, and finite temperature decoding (MPM) becomes clear. In addition, our analysis provides an explanation for the difference in performance between MN and Gallager codes. Our results are more optimistic than those derived via the methods of information theory and are in excellent agreement with recent results from another statistical physics approach.Comment: 9 pages, 5 figure

    Second-Order Weight Distributions

    Full text link
    A fundamental property of codes, the second-order weight distribution, is proposed to solve the problems such as computing second moments of weight distributions of linear code ensembles. A series of results, parallel to those for weight distributions, is established for second-order weight distributions. In particular, an analogue of MacWilliams identities is proved. The second-order weight distributions of regular LDPC code ensembles are then computed. As easy consequences, the second moments of weight distributions of regular LDPC code ensembles are obtained. Furthermore, the application of second-order weight distributions in random coding approach is discussed. The second-order weight distributions of the ensembles generated by a so-called 2-good random generator or parity-check matrix are computed, where a 2-good random matrix is a kind of generalization of the uniformly distributed random matrix over a finite filed and is very useful for solving problems that involve pairwise or triple-wise properties of sequences. It is shown that the 2-good property is reflected in the second-order weight distribution, which thus plays a fundamental role in some well-known problems in coding theory and combinatorics. An example of linear intersecting codes is finally provided to illustrate this fact.Comment: 10 pages, accepted for publication in IEEE Transactions on Information Theory, May 201

    Minimum Pseudoweight Analysis of 3-Dimensional Turbo Codes

    Full text link
    In this work, we consider pseudocodewords of (relaxed) linear programming (LP) decoding of 3-dimensional turbo codes (3D-TCs). We present a relaxed LP decoder for 3D-TCs, adapting the relaxed LP decoder for conventional turbo codes proposed by Feldman in his thesis. We show that the 3D-TC polytope is proper and CC-symmetric, and make a connection to finite graph covers of the 3D-TC factor graph. This connection is used to show that the support set of any pseudocodeword is a stopping set of iterative decoding of 3D-TCs using maximum a posteriori constituent decoders on the binary erasure channel. Furthermore, we compute ensemble-average pseudoweight enumerators of 3D-TCs and perform a finite-length minimum pseudoweight analysis for small cover degrees. Also, an explicit description of the fundamental cone of the 3D-TC polytope is given. Finally, we present an extensive numerical study of small-to-medium block length 3D-TCs, which shows that 1) typically (i.e., in most cases) when the minimum distance dmind_{\rm min} and/or the stopping distance hminh_{\rm min} is high, the minimum pseudoweight (on the additive white Gaussian noise channel) is strictly smaller than both the dmind_{\rm min} and the hminh_{\rm min}, and 2) the minimum pseudoweight grows with the block length, at least for small-to-medium block lengths.Comment: To appear in IEEE Transactions on Communication

    Trapping Set Enumerators for Repeat Multiple Accumulate Code Ensembles

    Full text link
    The serial concatenation of a repetition code with two or more accumulators has the advantage of a simple encoder structure. Furthermore, the resulting ensemble is asymptotically good and exhibits minimum distance growing linearly with block length. However, in practice these codes cannot be decoded by a maximum likelihood decoder, and iterative decoding schemes must be employed. For low-density parity-check codes, the notion of trapping sets has been introduced to estimate the performance of these codes under iterative message passing decoding. In this paper, we present a closed form finite length ensemble trapping set enumerator for repeat multiple accumulate codes by creating a trellis representation of trapping sets. We also obtain the asymptotic expressions when the block length tends to infinity and evaluate them numerically.Comment: 5 pages, to appear in proc. IEEE ISIT, June 200

    Capacity-Achieving Codes with Bounded Graphical Complexity on Noisy Channels

    Full text link
    We introduce a new family of concatenated codes with an outer low-density parity-check (LDPC) code and an inner low-density generator matrix (LDGM) code, and prove that these codes can achieve capacity under any memoryless binary-input output-symmetric (MBIOS) channel using maximum-likelihood (ML) decoding with bounded graphical complexity, i.e., the number of edges per information bit in their graphical representation is bounded. In particular, we also show that these codes can achieve capacity on the binary erasure channel (BEC) under belief propagation (BP) decoding with bounded decoding complexity per information bit per iteration for all erasure probabilities in (0, 1). By deriving and analyzing the average weight distribution (AWD) and the corresponding asymptotic growth rate of these codes with a rate-1 inner LDGM code, we also show that these codes achieve the Gilbert-Varshamov bound with asymptotically high probability. This result can be attributed to the presence of the inner rate-1 LDGM code, which is demonstrated to help eliminate high weight codewords in the LDPC code while maintaining a vanishingly small amount of low weight codewords.Comment: 17 pages, 2 figures. This paper is to be presented in the 43rd Annual Allerton Conference on Communication, Control and Computing, Monticello, IL, USA, Sept. 28-30, 200
    • …
    corecore